Mitochondrial overload and proximal tubular cell atrophy

线粒体过载和近端肾小管细胞萎缩

基本信息

项目摘要

Proximal tubular epithelial cells (PTC) are highly energy demanding kidney cells. Their energy need is covered mostly from mitochondrial fatty acid oxidation. If the high energy demand is not met with sufficient ATP production, tubular epithelial cells undergo apoptosis and atrophy. Derailments in mitochondrial fatty acid metabolism are therefore the main underlying candidate mechanisms in tubular cell death. It has recently been discovered in type 2 diabetic mice and humans that the diabetic kidney exhibits increased fatty acid metabolism and oxidation, but this is not matched with ATP production. The kidney cortex accumulates incompletely oxidized metabolic products which is typical of mitochondrial overload. Our central hypothesis is that this incomplete fatty acid oxidation causes proximal tubule apoptosis through pathways critical to mitochondrial function. Our compelling set of preliminary data show that mitochondrial overload in cells causes energy deficit and oxidant production. In our new mouse model, incomplete fatty acid oxidation and mitochondrial overload causes kidney disease. This was achieved by PTC-specific deletion of carnitine-acetyltransferase (CrAT). The enzyme shuttles excess fatty acid products out of the mitochondria; therefore, lack of CrAT models mitochondrial overload. Our goal is to define the mechanisms that are forerunners of tubular apoptosis due to mitochondrial overload. Three interconnected but independent aims will test our hypothesis using state-of-the- art approaches of both molecular and redox biology. In Aim 1, we will test the prediction that incomplete fatty acid oxidation causes mitochondrial energy deficit, which is then detrimental to tubular cells. Aim 2 will test the hypothesis that incomplete fatty acid oxidation leads to excess mitchondrial ROS production and apoptosis. The first two aims will use loss-of-function approaches (PTC-specific CrAT knockout mice alone or in combination with obesity and type 2 diabetes), mechanistic studies from primary PTCs isolated from these models and advanced biophysical measurements (extracellular flux analyzer, electron spin resonance spectroscopy). In Aim 3, we will test whether alleviating mitochondrial overload by enhancing the efflux of incompletely oxidized products offers prevention. We will use in vitro and in vivo gain-of-function experiments (CrAT overexpression and re-expression) as rescue experiments. The experimental strategy is designed to establish the role of incomplete mitochondrial fatty acid oxidation in tubular injury, decipher the underlying biochemical mechanisms and address whether such pathways can offer the basis for tubular cell preservation well before the appearance of apoptosis, in the context of obesity and type 2 diabetes. Provided that these mechanisms are forerunners of tubular cell apoptosis, targeting mitochondrial fatty acid overload can be a prominent new area to prevent, rather than treat tubular atrophy and chronic kidney disease.
近端肾小管上皮细胞(PTC)是高能量的肾细胞。他们的能量需求涵盖 主要来自线粒体脂肪酸氧化。如果没有足够的ATP满足高能量需求 产生,管状上皮细胞会凋亡和萎缩。线粒体脂肪酸的出轨 因此,代谢是管状细胞死亡中的主要基础候选机制。最近已经 在2型糖尿病小鼠和人类中发现的糖尿病肾脏表现出增加的脂肪酸 代谢和氧化,但这与ATP的产生不符。肾脏皮质积聚 典型的线粒体超负荷的氧化代谢产物不完全氧化。我们的中心假设是 这种不完全的脂肪酸氧化会导致小管的近端凋亡通过至关重要的途径 线粒体功能。 我们引人注目的初步数据表明,细胞中的线粒体超负荷会导致能量缺陷,并且 氧化剂产生。在我们的新鼠标模型中,不完全的脂肪酸氧化和线粒体超负荷 引起肾脏疾病。这是通过PTC特异性缺失的肉碱 - 乙酰转移酶(CRAT)来实现的。这 酶从线粒体中将多余的脂肪酸产物穿梭;因此,缺乏crat模型 线粒体超负荷。我们的目标是定义由于 线粒体超负荷。三个相互连接但独立的目标将使用最先进的 分子和氧化还原生物学的艺术方法。在AIM 1中,我们将测试不完全脂肪的预测 酸氧化会导致线粒体能量缺陷,然后对管状细胞有害。 AIM 2将测试 假设不完全的脂肪酸氧化会导致过量的Mitchondrial ROS产生和凋亡。 前两个目标将使用功能丧失方法(单独或仅在 结合肥胖和2型糖尿病),从这些原发性PTC中分离出来的机械研究 模型和晚期生物物理测量(细胞外通量分析仪,电子自旋共振 光谱法)。在AIM 3中,我们将测试是否通过增强出境来减轻线粒体过载 不完全氧化的产品提供预防。我们将使用体外和体内功能获得实验 (克拉特过表达和重新表达)作为救援实验。实验策略旨在 确定线粒体脂肪酸氧化在管状损伤中的作用,破译基础 生化机制,并解决此类途径是否可以为管状细胞保存提供基础 在肥胖和2型糖尿病的背景下出现凋亡之前。规定这些 机制是管状细胞凋亡的先驱,靶向线粒体脂肪酸超负荷可能是 突出的新领域可以预防,而不是治疗管状萎缩和慢性肾脏疾病。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Redox phospholipidomics analysis reveals specific oxidized phospholipids and regions in the diabetic mouse kidney.
  • DOI:
    10.1016/j.redox.2022.102520
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    McCrimmon, Allison;Corbin, Sydney;Shrestha, Bindesh;Roman, Gregory;Dhungana, Suraj;Stadler, Krisztian
  • 通讯作者:
    Stadler, Krisztian
Comprehensive assessment of mitochondrial respiratory function in freshly isolated nephron segments.
  • DOI:
    10.1152/ajprenal.00031.2020
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allison N. Mccrimmon;Mark Domondon;Regina F. Sultanova;D. Ilatovskaya;K. Stadler
  • 通讯作者:
    Allison N. Mccrimmon;Mark Domondon;Regina F. Sultanova;D. Ilatovskaya;K. Stadler
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Krisztian Stadler其他文献

Krisztian Stadler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Krisztian Stadler', 18)}}的其他基金

Novel redox mechanisms of oxygenated phospholipids in chronic and diabetic kidney disease
慢性和糖尿病肾病中含氧磷脂的新氧化还原机制
  • 批准号:
    10752954
  • 财政年份:
    2023
  • 资助金额:
    $ 43.96万
  • 项目类别:
Lipid peroxidation-induced chemical modifications of insulin signaling proteins
脂质过氧化诱导的胰岛素信号蛋白化学修饰
  • 批准号:
    8327262
  • 财政年份:
    2010
  • 资助金额:
    $ 43.96万
  • 项目类别:
Lipid peroxidation-induced chemical modifications of insulin signaling proteins
脂质过氧化诱导的胰岛素信号蛋白化学修饰
  • 批准号:
    8142216
  • 财政年份:
    2010
  • 资助金额:
    $ 43.96万
  • 项目类别:
Lipid peroxidation-induced chemical modifications of insulin signaling proteins
脂质过氧化诱导的胰岛素信号蛋白化学修饰
  • 批准号:
    8119876
  • 财政年份:
    2010
  • 资助金额:
    $ 43.96万
  • 项目类别:

相似国自然基金

鞘氨醇激酶2通过组蛋白H3乙酰化及STAT3磷酸化调节糖异生相关基因PEPCK和G6Pase表达的机制研究
  • 批准号:
    81800767
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
热休克蛋白70羧基末端相互作用蛋白调控TDP-43蛋白参与肌萎缩侧索硬化症发病的机制研究
  • 批准号:
    U1404311
  • 批准年份:
    2014
  • 资助金额:
    30.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

Microbiome Metabolite Valerobetaine: Mechanisms in Aging
微生物组代谢物戊甜菜碱:衰老机制
  • 批准号:
    10763615
  • 财政年份:
    2023
  • 资助金额:
    $ 43.96万
  • 项目类别:
Quantitation of nutrient metabolism in brain tumor patients using advanced 13C isotopomer technology
使用先进的 13C 同位素技术定量脑肿瘤患者的营养代谢
  • 批准号:
    10735720
  • 财政年份:
    2023
  • 资助金额:
    $ 43.96万
  • 项目类别:
Investigating the role of CRAT as a driver of triple negative breast cancer chemoresistance
研究 CRAT 作为三阴性乳腺癌化疗耐药驱动因素的作用
  • 批准号:
    10536077
  • 财政年份:
    2022
  • 资助金额:
    $ 43.96万
  • 项目类别:
Investigating the role of CRAT as a driver of triple negative breast cancer chemoresistance
研究 CRAT 作为三阴性乳腺癌化疗耐药驱动因素的作用
  • 批准号:
    10677609
  • 财政年份:
    2022
  • 资助金额:
    $ 43.96万
  • 项目类别:
Neuroprotetion of L-Acetylcarnitine
L-乙酰肉碱的神经保护作用
  • 批准号:
    21K16892
  • 财政年份:
    2021
  • 资助金额:
    $ 43.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了