FAIR-CT: a practical approach to enable ultra-low dose CT for longitudinal disease and treatment monitoring

FAIR-CT:一种利用超低剂量 CT 进行纵向疾病和治疗监测的实用方法

基本信息

  • 批准号:
    10158473
  • 负责人:
  • 金额:
    $ 22.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-15 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

Project Abstract/Summary Ultra-low dose CT, defined as sub-millisievert (sub-mSv) imaging of the entire chest, abdomen or pelvis, is critically needed for healthcare of patients with chronic diseases and cancer. Unfortunately, photon starvation and electronic noise make imaging at such dose levels challenging. Photon starvation refers to the number of transmitted photons. When no photons are transmitted, the measurement is essentially useless. If few photons are transmitted, the measurement carries information, but its interpretation and value are confounded by electronic noise. Solutions with encouraging results have been offered for sub-mSv chest imaging, but these are not widely available and not easily generalizable across anatomical sites, vendors and scanner models. We propose a novel, robust solution for ultra-low dose CT that will overcome these issues. We refer to our solution as FAIR-CT, which stands for Finite-Angle Integrated-Ray CT. FAIR-CT operates under the principle that photon starvation and the confounding effect of electronic noise are best handled by avoiding them, which is made possible by increasing the data integration time during the source-detector rotation. FAIR-CT data strongly deviate from the classical CT data model and share the streak artifact problem of sparse view sampling. FAIR-CT data acquisition also affects azimuthal resolution. We anticipate that these issues can be suitably handled using advanced image reconstruction techniques. Once available, FAIR-CT will allow improvements in longitudinal monitoring of patients with chronic diseases such as COPD, urolithiasis and diabetes, thereby reducing mortality and co-morbidities. FAIR-CT will also allow advancing cancer therapy treatments by enabling adjustments in radiation therapy plans between dose fractions without increasing CT radiation exposure, and by facilitating early detection of inflammations in drug-based therapies. To bring FAIR-CT towards fruition, we will work on two specific aims: (1) Creation of a comprehensive collection of FAIR-CT data sets enabling rigorous development, validation and evaluation of image reconstruction algorithms; (2) Development, validation and evaluation of advanced image reconstruction algorithms. The FAIR-CT data sets will involve the utilization of state-of-the-art scanners and include real patient data synthesized from high dose scans acquired for standard of care. Two complementary image reconstruction approaches will be investigated. Namely, model-based iterative reconstruction with non-linear forward model and dedicated compressed sensing regularization; and deep learning-based refinement of FBP reconstructions using target images with task-adapted image quality. Image quality evaluation will account for critical biological variables and involve objective metrics such as structure similarity and contrast-to-noise ratio for clinically-proven lesions, as well as task-based performance metrics involving human readers.
项目摘要/摘要 超低剂量CT,定义为整个胸部,腹部或骨盆的子米利列赛(sub-msv)成像 慢性疾病和癌症患者的医疗保健至关重要。不幸的是,光子饥饿 电子噪声使这种剂量水平的成像具有挑战性。光子饥饿是指 传输光子。当没有传输光子时,测量本质上是没有用的。如果很少的光子 被传输,测量带有信息,但其解释和价值与 电子噪声。为子MSV胸部成像提供了令人鼓舞的结果的解决方案,但是这些 在解剖站点,供应商和扫描仪模型中不可广泛使用,也不容易概括。 我们为超低剂量CT提出了一种新颖的,可靠的解决方案,该解决方案将克服这些问题。我们指的是我们的 解决方案作为Fair-CT,代表有限角度的集成射线CT。 Fair-CT根据原则运行 最好通过避免它们来处理光子饥饿和电子噪声的混杂效应, 通过增加源检测器旋转期间的数据积分时间来使其成为可能。 Fair-CT数据 强烈偏离经典CT数据模型,并共享稀疏视图的条纹伪像问题 采样。 Fair-CT数据采集还会影响方位角分辨率。我们预计这些问题可能是 使用高级图像重建技术适当处理。一旦可用,公平将允许 改善了慢性疾病患者(例如COPD,尿道病和尿道病)的纵向监测 糖尿病,从而降低死亡率和合并症。 Fair-CT还将允许前进的癌症治疗 通过对剂量分数之间的放射治疗计划进行调整,可以进行治疗 增加CT辐射暴露,并通过促进基于药物的炎症的早期检测 疗法。为了实现公平委员会,我们将以两个具体的目的致力:(1)创建 全面收集公平CT数据集,可实现严格的开发,验证和评估 图像重建算法; (2)高级图像重建的开发,验证和评估 算法。 Fair-CT数据集将涉及最先进的扫描仪的利用,并包括真实的扫描仪 从高剂量扫描中合成的患者数据是为了获得标准的护理。两个互补图像 将研究重建方法。也就是说,基于模型的迭代重建与非线性重建 正向模型和专用压缩感应正则化;和FBP的深度基于学习的改进 使用具有任务适应图像质量的目标图像的重建。图像质量评估将考虑 关键的生物学变量,涉及客观指标,例如结构相似性和对比度比率 用于临床验证的病变以及涉及人类读者的基于任务的绩效指标。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Patient-specific hyperparameter learning for optimization-based CT image reconstruction.
Convex optimization algorithms in medical image reconstruction-in the age of AI.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frederic Noo其他文献

Frederic Noo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frederic Noo', 18)}}的其他基金

Novel Reconstruction Paradigm for Multiphasic CT Imaging of Kidney Cancer
肾癌多相 CT 成像的新型重建范例
  • 批准号:
    9387307
  • 财政年份:
    2017
  • 资助金额:
    $ 22.73万
  • 项目类别:
Efficient snap-shot CT imaging of the entire heart using staggered circular scans
使用交错圆形扫描对整个心脏进行高效快照 CT 成像
  • 批准号:
    7740011
  • 财政年份:
    2009
  • 资助金额:
    $ 22.73万
  • 项目类别:
Efficient snap-shot CT imaging of the entire heart using staggered circular scans
使用交错圆形扫描对整个心脏进行高效快照 CT 成像
  • 批准号:
    7880625
  • 财政年份:
    2009
  • 资助金额:
    $ 22.73万
  • 项目类别:
Ultra-fast whole-heart CT using z-motion of the X-ray source
使用 X 射线源 z 轴运动的超快速全心脏 CT
  • 批准号:
    7851137
  • 财政年份:
    2008
  • 资助金额:
    $ 22.73万
  • 项目类别:
Ultra-fast whole-heart CT using z-motion of the X-ray source
使用 X 射线源 z 轴运动的超快速全心脏 CT
  • 批准号:
    8089401
  • 财政年份:
    2008
  • 资助金额:
    $ 22.73万
  • 项目类别:
Ultra-fast whole-heart CT using z-motion of the X-ray source
使用 X 射线源 z 轴运动的超快速全心脏 CT
  • 批准号:
    7528237
  • 财政年份:
    2008
  • 资助金额:
    $ 22.73万
  • 项目类别:
Ultra-fast whole-heart CT using z-motion of the X-ray source
使用 X 射线源 z 轴运动的超快速全心脏 CT
  • 批准号:
    7656593
  • 财政年份:
    2008
  • 资助金额:
    $ 22.73万
  • 项目类别:
Cone-Beam Tomography with Truncated Projections
截断投影的锥束断层扫描
  • 批准号:
    6892851
  • 财政年份:
    2004
  • 资助金额:
    $ 22.73万
  • 项目类别:
Cone-Beam Tomography with Truncated Projections
截断投影的锥束断层扫描
  • 批准号:
    7025043
  • 财政年份:
    2004
  • 资助金额:
    $ 22.73万
  • 项目类别:
RECONSTRUCTION ALGORITHM FOR MULTI-SLICE SPIRAL X-RAY CT
多排螺旋X射线CT重建算法
  • 批准号:
    6779809
  • 财政年份:
    2002
  • 资助金额:
    $ 22.73万
  • 项目类别:

相似海外基金

San Diego State University Advancing Cancer Careers for ExceLlence (ACCEL)
圣地亚哥州立大学卓越推进癌症职业 (ACCEL)
  • 批准号:
    10784133
  • 财政年份:
    2023
  • 资助金额:
    $ 22.73万
  • 项目类别:
Defining a novel subset of metastasis-associated monocytes
定义转移相关单核细胞的新子集
  • 批准号:
    10751562
  • 财政年份:
    2023
  • 资助金额:
    $ 22.73万
  • 项目类别:
2023 Stem Cells and Cancer Gordon Research Conference and Seminar
2023年干细胞与癌症戈登研究会议暨研讨会
  • 批准号:
    10683590
  • 财政年份:
    2023
  • 资助金额:
    $ 22.73万
  • 项目类别:
Mitigating Long-term Cardiotoxicity with Nanoparticle Encapsulated Anthracyclines
用纳米颗粒封装的蒽环类药物减轻长期心脏毒性
  • 批准号:
    10378678
  • 财政年份:
    2021
  • 资助金额:
    $ 22.73万
  • 项目类别:
Mitigating Long-term Cardiotoxicity with Nanoparticle Encapsulated Anthracyclines
用纳米颗粒封装的蒽环类药物减轻长期心脏毒性
  • 批准号:
    10195941
  • 财政年份:
    2021
  • 资助金额:
    $ 22.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了