Phase 1 clinical trial to develop a personalized adaptive text message intervention using control systems engineering tools to increase physical activity in early adulthood
第一阶段临床试验,利用控制系统工程工具开发个性化自适应短信干预,以增加成年早期的体力活动
基本信息
- 批准号:10152695
- 负责人:
- 金额:$ 55.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAdultAlgorithmsBehaviorBehavior TherapyBehavioralBehavioral ModelCardiovascular DiseasesCaringCellular PhoneChronicChronic DiseaseComplexComputer ModelsDataDevelopmentDiabetes MellitusDietEngineeringEnsureFrequenciesFutureGoalsHealthHealthcare SystemsIndividualInterventionLocationMalignant NeoplasmsMethodsModelingParticipantPerformancePeriodicityPhase I Clinical TrialsPhysical activityPopulationPosturePreventiveProblem SolvingRandomizedRisk FactorsRunningSamplingSmokingSpecific qualifier valueSystemText MessagingTimeUncertaintyUnderinsuredUpdateWeatherWeight GainWorkacceptability and feasibilityadaptive interventionbasebehavior changebehavioral responsecardiovascular disorder riskcardiovascular healthcontextual factorscostdesigndisorder riskemerging adultexercise interventionexperiencefallsindexinginterestintervention effectlifestyle factorsmathematical modelnovel strategiespersonalized decisionpersonalized interventionpersonalized medicinepersonalized strategiesphase II trialphysical inactivityphysical modelprecision medicinepredictive modelingpreservationpreventpublic health relevancerecruitresponseservice interventionsuccesstext messaging interventiontooltreatment effecttreatment responsewearable devicewearable sensor technologyyoung adult
项目摘要
Project Summary
Physical inactivity is part of a constellation of lifestyle factors – with smoking and diet – that contribute to weight
gain in early adulthood. Risk factors that compromise cardiovascular health begin to accumulate during the
transition into adulthood. Interventions that prevent decreases in physical activity (PA) during this period can
reduce long-term chronic disease risk. Text message interventions have shown a consistent positive effect on
PA but efforts to increase those intervention effects via tailoring, targeting or personalizing have not realized
their potential. New approaches have emerged for tailoring interventions based on treatment responses or
contextual factors (e.g., stepped care, just-in-time adaptive interventions) but they apply a single decision rule
uniformly for all participants. Behavior is complex and multiply determined so it is possible that treatment
responses are idiosyncratic, necessitating personalized decision rules. Building on interest in precision
medicine, we propose a method to develop personalized adaptive messaging interventions using intensive
longitudinal data (from wearable sensors and momentary weather indices) and tools from control systems
engineering (system identification and robust control synthesis). In preliminary work, we developed a
computational model of physical activity responses to individual text messages. The greatest barrier to
implementing that approach in interventions is that the computational models required for predictive modeling
of PA dynamics have a high degree of uncertainty and are too complex to run efficiently on smartphones and
other wearable devices. We propose to solve that problem by (1) developing a dynamical model of physical
activity based on historical responses to messages, recent behavior, location-specific weather, and temporal
features, and (2) evaluating the acceptability and feasibility of more versus less aggressive adaptation
strategies for personalizing an intervention controller. To accomplish these aims, we will recruit young adults to
participate in a PA messaging intervention and develop a computational model of responses to different
messages under different conditions. A model-based controller will be developed to (a) optimize message
timing, frequency, and content selection, and (b) achieve specified behavior change goals under varying
conditions. We will then deploy that controller with an independent sample of young adults to determine how
more versus less aggressive adaptation strategies over the next six months impact user experience. This study
will contribute a model-based intervention controller and an acceptable adaptation strategy to use in a
personalized adaptive messaging intervention for increasing PA. If successful, it will increase both PA and user
engagement by selecting and timing messages to maximize effects and minimize burden. This approach can
be applied to develop personalized interventions for other behaviors relevant for preventing weight gain,
preserving cardiovascular health, and reducing chronic disease risk.
项目摘要
身体上的不活动是一系列生活方式因素的一部分 - 吸烟和饮食 - 有助于体重
成年初。损害心血管健康的危险因素开始积累
过渡到成年。在此期间阻止身体活动下降(PA)的干预措施可以
降低长期慢性疾病风险。短信干预措施对
PA但是通过裁缝,定位或个性化来增加这些干预效果的努力尚未实现
他们的潜力。已经出现了基于治疗反应或
上下文因素(例如,阶梯护理,即时自适应干预措施),但它们应用了单个决策规则
对于所有参与者而言均匀。行为是复杂的,多次确定,因此可以治疗
响应是特殊的,必要的个性化决策规则。基于精确的兴趣
医学,我们提出了一种使用密集型开发个性化自适应消息干预措施的方法
纵向数据(来自可穿戴传感器和瞬时天气指数)和控制系统的工具
工程(系统识别和鲁棒控制合成)。在初步工作中,我们开发了
体育活动的计算模型对单个文本消息的响应。最大的障碍
在干预措施中实施该方法是预测建模所需的计算模型
PA动力学的不确定性高,并且太复杂了,无法在智能手机上有效运行
其他可穿戴设备。我们建议通过(1)开发物理动态模型来解决这个问题
基于对消息的历史响应,最近的行为,特定于位置的天气和临时的活动
功能,以及(2)评估更多与更具侵略性适应的可接受性和可行性
个性化干预控制器的策略。为了实现这些目标,我们将招募年轻人
参加PA消息干预并开发出对不同的响应的计算模型
在不同条件下的消息。将开发基于模型的控制器以(a)优化消息
时间,频率和内容选择,以及(b)在变化下实现了指定的行为改变目标
状况。然后,我们将使用独立的年轻人样本部署该控制器,以确定如何
在接下来的六个月中,更多与较不积极的适应策略会影响用户体验。这项研究
将贡献基于模型的干预控制器和可接受的适应策略
个性化的自适应消息干预措施,以增加PA。如果成功,它将增加PA和用户
通过选择和计时消息来接触,以最大程度地提高效果并最大程度地减轻负担。这种方法可以
应用于制定针对预防体重增加有关的其他行为的个性化干预措施
保留心血管健康,并降低慢性疾病风险。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of switched autoregressive exogenous systems from large noisy datasets.
- DOI:10.1002/rnc.4968
- 发表时间:2020-10-01
- 期刊:
- 影响因子:3.9
- 作者:Hojjatinia S;Lagoa CM;Dabbene F
- 通讯作者:Dabbene F
Steps towards digital tools for personalised physical activity promotion
- DOI:10.1136/bjsports-2021-104169
- 发表时间:2021-09-16
- 期刊:
- 影响因子:18.4
- 作者:Conroy, David E.;Bennett, Gary G.;Wolin, Kathleen Y.
- 通讯作者:Wolin, Kathleen Y.
Dynamic models of stress-smoking responses based on high-frequency sensor data.
- DOI:10.1038/s41746-021-00532-2
- 发表时间:2021-11-23
- 期刊:
- 影响因子:15.2
- 作者:Hojjatinia S;Daly ER;Hnat T;Hossain SM;Kumar S;Lagoa CM;Nahum-Shani I;Samiei SA;Spring B;Conroy DE
- 通讯作者:Conroy DE
Wearable device adherence among insufficiently-active young adults is independent of identity and motivation for physical activity.
活动不足的年轻人对可穿戴设备的依从性与身体活动的身份和动机无关。
- DOI:10.1007/s10865-023-00444-4
- 发表时间:2024
- 期刊:
- 影响因子:3.1
- 作者:Wu,Jingchuan;Olson,JennyL;Brunke-Reese,Deborah;Lagoa,ConstantinoM;Conroy,DavidE
- 通讯作者:Conroy,DavidE
Distributionally Robust Portfolio Optimization.
- DOI:10.1109/cdc40024.2019.9029381
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:Bardakci IE;Lagoa CM
- 通讯作者:Lagoa CM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID E. CONROY其他文献
DAVID E. CONROY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID E. CONROY', 18)}}的其他基金
Efficacy of Precision Text Messaging to Increase Physical Activity in Insufficiently-Active Young Adults
精准短信对增加活动不足的年轻人身体活动的功效
- 批准号:
10508980 - 财政年份:2022
- 资助金额:
$ 55.72万 - 项目类别:
Society of Behavioral Medicine 2022 Annual Meeting & Scientific Sessions
行为医学学会2022年年会
- 批准号:
10661113 - 财政年份:2022
- 资助金额:
$ 55.72万 - 项目类别:
Efficacy of sipIT Intervention for Increasing Urine Output in Patients with Urolithiasis
sipIT 干预对增加尿石症患者尿量的疗效
- 批准号:
10452545 - 财政年份:2020
- 资助金额:
$ 55.72万 - 项目类别:
Efficacy of sipIT Intervention for Increasing Urine Output in Patients with Urolithiasis
sipIT 干预对增加尿石症患者尿量的疗效
- 批准号:
10679033 - 财政年份:2020
- 资助金额:
$ 55.72万 - 项目类别:
Efficacy of sipIT Intervention for Increasing Urine Output in Patients with Urolithiasis
sipIT 干预对增加尿石症患者尿量的疗效
- 批准号:
10264150 - 财政年份:2020
- 资助金额:
$ 55.72万 - 项目类别:
Efficacy of sipIT Intervention for Increasing Urine Output in Patients with Urolithiasis
sipIT 干预对增加尿石症患者尿量的疗效
- 批准号:
10831605 - 财政年份:2020
- 资助金额:
$ 55.72万 - 项目类别:
Efficacy of sipIT Intervention for Increasing Urine Output in Patients with Urolithiasis
sipIT 干预对增加尿石症患者尿量的疗效
- 批准号:
10119792 - 财政年份:2020
- 资助金额:
$ 55.72万 - 项目类别:
Phase 1 clinical trial to develop a personalized adaptive text message intervention using control systems engineering tools to increase physical activity in early adulthood
第一阶段临床试验,利用控制系统工程工具开发个性化自适应短信干预,以增加成年早期的体力活动
- 批准号:
9922375 - 财政年份:2018
- 资助金额:
$ 55.72万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 55.72万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 55.72万 - 项目类别:
Longitudinal Personalized Dynamics Among Anorexia Nervosa Symptoms, Core Dimensions, and Physiology Predicting Suicide Risk
神经性厌食症症状、核心维度和预测自杀风险的生理学之间的纵向个性化动态
- 批准号:
10731597 - 财政年份:2023
- 资助金额:
$ 55.72万 - 项目类别:
Novel wearable sensor calibration and validation for automated measurement of screen time in children
新型可穿戴传感器校准和验证,用于自动测量儿童屏幕时间
- 批准号:
10585840 - 财政年份:2023
- 资助金额:
$ 55.72万 - 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 55.72万 - 项目类别: