Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
基本信息
- 批准号:10727374
- 负责人:
- 金额:$ 11.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-04 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerActing OutAddressAdoptionAdultAffectAfricaAfrica South of the SaharaAfricanAlgorithmsAreaBackBedsBehaviorBiteCessation of lifeChildClassificationCommunitiesCommunity SurveysCountryCulicidaeDataData SetElectronicsFaceFoundationsFrequenciesFundingGoalsHealthHeightHouseholdIncidenceInsecticidesInterruptionInterventionInvestmentsKnowledgeLifeMalariaMalaria preventionMattressesMeasurementMeasuresMethodsMonitorMotionNational Institute of Allergy and Infectious DiseaseObservational StudyParticipantPatient Self-ReportPatternPerformancePersonsProtocols documentationPublic HealthRecommendationReportingResearchResearch MethodologyResistanceRiskRoleShapesSleepSurveysSystemTestingTimeTrainingUgandaVariantVertebral columnVideo RecordingWorkcareerclassification algorithmdisease transmissionhigh rewardhigh riskimprovedinnovationinventionmachine learning algorithmneural networknew technologynext generationnovelnovel strategiespreventpyrethroidrandom forestrecruitremote monitoringresearch studyresponsescale upsensortime usetooltrendvector
项目摘要
PROJECT SUMMARY/ABSTRACT
Malaria affects three billion people worldwide. Despite remarkable reductions in malaria incidence over the last
15 years, recent evidence shows that our traditional control tools are weakening. Long-lasting insecticide-treated
bednets (LLINs) are the most widely used tool for malaria prevention and have contributed significantly to de-
creases in malaria incidence, but recent studies suggest that LLINs are either less effective than before or people
are not using them as reported. A rigorous assessment of the timing and circumstances of LLIN use could be
vitally important to regain the initiative in malaria control, but we lack a reliable measure of LLIN use. Current
measurement tools, like self-reported use, are subjective and unable to account for temporal variations in use. I
previously invented an electronic monitor of LLIN use to address these limitations. In my NIAID-funded K23 work
we use these tools to measure LLIN use related to malaria exposure. Most recently, I have pioneered a vastly
improved approach using machine learning algorithms and accelerometer-based sensors to measure LLIN use.
The central rationale for this project is that by leveraging this novel accelerometer LLIN use monitor we can be
more ambitious with our goals for measuring malaria risk related to LLINs. When combined with a carefully
trained machine learning algorithm, I believe that we can accurately classify a far wider range of behaviors than
merely when an LLIN is used. In this study, we will additionally 1) measure if there is someone under the LLIN,
2) determine how many people are under the LLIN, 3) identify interruptions in LLIN use (such as entering or
exiting an LLIN), and 4) characterize who is under the LLIN (e.g. adult versus child). Longitudinal surveillance of
exactly this type of data is crucial to disentangle the role of LLINs in malaria prevention. The immediate goal of
this R21 proposal is to train a comprehensive platform for highly accurate remote monitoring of LLIN use and
other behaviors related to malaria risk. Our approach thus gathers data from the community, trains a machine
learning algorithm and then tests the real-life accuracy of that system. We will pursue our research goal by with
these three aims: 1) gather real-life data about how LLINs are hung and used in the community, 2) train the
machine learning algorithms based off pre-defined protocols informed by actual practice and 3) test the accuracy
of the machine learning algorithms in real-life settings. This high-risk, high-reward proposal represents an inno-
vative approach to answer a pressing question that limits our understanding of how LLINs prevent malaria: when
and how are LLINs used in practice? The long term goal for this novel surveillance platform is to develop a tool
for measuring LLIN use and related behaviors to point the way towards identifying better interventions for malaria
prevention. The single accelerometer and generality in the training of the machine were purposefully chosen to
facilitate adoption of this approach for malaria surveillance in other settings. This proposal will establish a firm
foundation upon which to pursue future research studies using this novel tool and prepare me for an independent
research career using novel technologies and research methods to improve malaria control.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Joseph Krezanoski其他文献
Paul Joseph Krezanoski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Joseph Krezanoski', 18)}}的其他基金
Identifying gaps between LLIN use and vector exposure to improve malaria control
确定 LLIN 使用和媒介暴露之间的差距,以改善疟疾控制
- 批准号:
10647800 - 财政年份:2019
- 资助金额:
$ 11.5万 - 项目类别:
Identifying gaps between LLIN use and vector exposure to improve malaria control
确定 LLIN 使用和媒介暴露之间的差距,以改善疟疾控制
- 批准号:
10443559 - 财政年份:2019
- 资助金额:
$ 11.5万 - 项目类别:
相似海外基金
Effects of Neighborhood Environment on Child Behavioral Health
邻里环境对儿童行为健康的影响
- 批准号:
10749444 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Regulation and impact of alternative splicing in biology and disease
选择性剪接在生物学和疾病中的调控和影响
- 批准号:
10405870 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
Resolvin D1 resolves inflammation in metabolic stress associated HFpEF
Resolvin D1 解决代谢应激相关 HFpEF 中的炎症
- 批准号:
10704156 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
Regulation and impact of alternative splicing in biology and disease
选择性剪接在生物学和疾病中的调控和影响
- 批准号:
10680397 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
Regulation and impact of alternative splicing in biology and disease
选择性剪接在生物学和疾病中的调控和影响
- 批准号:
10833336 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别: