STUDY ON THE GROUPS OF DIFFEOMORPHISMS

微分形群的研究

基本信息

  • 批准号:
    09440028
  • 负责人:
  • 金额:
    $ 5.06万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

We studied the groups of diffeomorphisms of the circle and the disk. In particular, we found an important relationship between the group of diffeomorphisms of the circle and the group of the area preserving diffeomorphisms of the disk. Namely using tha fact that any diffeomorphism of the boundary circle of the disk has an extention to an area preserving diffeomorphism of the disk, we wrote down the relationship between the Euler class for the group of diffeomorphisms of the circle and the Calabi invariant for the group of the area preserving diffeomorphisms of the disk. Moreover we showed the sane result for the groups of Lipschitz homeomorphisms.We studied similar relationship between the group of diffeomorphisms of 2-sphere and that of 3-ball, between the group of diffeomorphisms of 3-sphere and that of 4-ball, or more generally, the group of diffeonorphisms of the boundary of a compact manifold and that of the manifold. We also studied the group of Lipschitz homeomorphisms and we obtained a new result on the perfectness of such groups.Relating to the contact structure on the 3-manifolds, we investigated the generalization of the notion of the projectively Anosov flows in higher dimensions. We studied the diffeomorphism classes of such objects. We look at the algebraic models in detail. We also studied Anosov flows and found a classification for regular projectively Anosov flows without compact leaves. We also studied complex vector fields and complex contact structures.We studied the characteristic classes for foliations and the SC^-*S algebra for the foliations. In particular we investigated the case where the foliation has transversely piecewise linear structure. We also looked at the finitely presented simple groups.
我们研究了圆圈和磁盘的差异群。特别是,我们发现了圆圈的差异群与保留磁盘差异的区域之间的重要关系。即使用事实,即磁盘边界圆的任何差异性具有延伸到保留磁盘的区域的区域,我们写下了圆圈的Euler类之间的关系保存磁盘差异的区域。此外,我们展示了Lipschitz同构的群体的理智结果。我们研究了2球的二型差异和3球之间的相似关系,在3杆的差异和4球或4球或4球的差异性之间更一般地,紧凑型歧管和歧管的边界的二态构成群。我们还研究了Lipschitz同构的群体,并获得了此类组的完美性的新结果。与3个模型上的接触结构汇总,我们研究了Project Anosov流的概念在更高的维度中。我们研究了此类对象的差异类别。我们详细研究代数模型。我们还研究了Anosov流量,并发现了常规的投射性Anosov流动的分类,而没有紧凑的叶子。我们还研究了复杂的矢量场和复杂的接触结构。我们研究了叶子的特征类别和叶子的sc^ - *s代数。特别是我们研究了叶面具有横向分段线性结构的情况。我们还研究了有限的简单群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MORITA,Shigeyuki: "Casson invariant, signature defect of framed manifolds and the secondary characteristic classes of surface bundles" Journal of Differential Geometry. 47. 560-599 (1997)
MORITA,Shigeyuki:“卡森不变量、框架流形的特征缺陷和表面束的二次特征类”微分几何杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
OHSHIKA,Kenichi: "Accnvrtyeuca theorem for Kleinian groups uclich are free products" Math.Aun.309. 53-70 (1997)
OHSHIKA,Kenichi:“克莱因群 uclich 的 Accnvrtyeuca 定理是自由产品”Math.Aun.309。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
MORITA,Shigeyuki: "Casson invariant, signature defect of manifolds and the secondary characteristic classes of surface burdlic" Journal of Diff. Geom.47. 560-599 (1997)
MORITA,Shigeyuki:“Casson 不变量、流形的特征缺陷和表面 burdlic 的次要特征类”Journal of Diff。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUBOI Takashi其他文献

TSUBOI Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUBOI Takashi', 18)}}的其他基金

Regulation of incretin secretion by microbiota metabolites
微生物代谢物调节肠促胰素分泌
  • 批准号:
    20H04121
  • 财政年份:
    2020
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular mechanisms of gastrointestinal hormone secretion by intestinal bacterial metabolites
肠道细菌代谢产物分泌胃肠激素的分子机制
  • 批准号:
    17K08529
  • 财政年份:
    2017
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of ghrelin secretion from endocrine cells
内分泌细胞分泌生长素释放肽的分子机制
  • 批准号:
    26460289
  • 财政年份:
    2014
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms of gliotransmitter release from astrocytes by imaging analysis
通过成像分析星形胶质细胞释放胶质递质的机制
  • 批准号:
    24790207
  • 财政年份:
    2012
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Actions of infinite simple groups
无限简单群的行动
  • 批准号:
    24654011
  • 财政年份:
    2012
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on the molecular mechanism of hormone secretion
激素分泌的分子机制研究
  • 批准号:
    21790197
  • 财政年份:
    2009
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Geometric study on infinite simple groups
无限简单群的几何研究
  • 批准号:
    21654009
  • 财政年份:
    2009
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Groups of diffeomorphisms of manifolds
流形微分同胚群
  • 批准号:
    20244003
  • 财政年份:
    2008
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Molecular mechanisms of hormone release revealed by live cell imaging analysis
活细胞成像分析揭示激素释放的分子机制
  • 批准号:
    18689008
  • 财政年份:
    2006
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Various aspects of infinite groups of transformations acting on manifolds
作用于流形上的无限变换群的各个方面
  • 批准号:
    16204004
  • 财政年份:
    2004
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似国自然基金

高精度常平均曲率曲面建模理论与应用研究
  • 批准号:
    61572288
  • 批准年份:
    2015
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目
多尺度动态粒子输运方程的渐近保持格式研究
  • 批准号:
    11201034
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Geometry of Transport in Symplectic and Volume-Preserving Dynamics
辛和保体积动力学中的输运几何
  • 批准号:
    1812481
  • 财政年份:
    2018
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Continuing Grant
Homotopy-Preserving Curve-Skeleton Extraction without Volume Meshes
不使用体网格的同伦保持曲线骨架提取
  • 批准号:
    17K14580
  • 财政年份:
    2017
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Ergodicity of volume preserving dynamical systems and its applications
保体积动力系统的遍历性及其应用
  • 批准号:
    15K17550
  • 财政年份:
    2015
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Spot dynamics of the volume preserving reaction-diffusion systems
体积保持反应扩散系统的点动力学
  • 批准号:
    25610029
  • 财政年份:
    2013
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Structure, Transport, and Chaos in Volume-Preserving Dynamics
体积保持动力学中的结构、传输和混沌
  • 批准号:
    1211350
  • 财政年份:
    2012
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了