Complex Manifolds and Gauge Theory
复流形和规范理论
基本信息
- 批准号:09440027
- 负责人:
- 金额:$ 8.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bando studied the existence problems of Einstein metrics on Kahler manifolds and holomorphic complex vector bundles. It is believed that there must be good relations between the existence of Einstein metrics and stabilities. He obtained a useful formula on a functional which connects them. He also wrote a paper which shows how Green functions can be used to obtain harmonic geometric objects.Nishikawa, jointly with Keisuke Ueno (Yamagata Univ.), studied the Dirichlet problem at infinity for harmonic maps between homogeneous spaces of negative curvature, and the complex analyticity of harmonic maps between complex hyperbolic spaces. A proper harmonic map which is CィイD14ィエD1 upto boundary and gives non-degenerate CR map on the boundaries is shown to be holomorphic.Urakawa continued to study harmonic maps, Yang-Mills connections and etc., and generalized the methods to work on graphs. On finite or infinite graphs, he obtained results on the spectra of Laplace operators, the estimates on Gr … More een functions and the analog of harmonic maps.Ishida studied real fans which generalize (rational) fans which are closely related to toric varieties. He introduced a category of graded modules of exterior algebra over real fans and defined a dualizing functor. He obtained counterparts of Serre duality and Poincare duality.Takagi studied a reaction-diffusion system which is posed by A. Gierer and H. Meinhardt as a fundamental model of morphogenesis and a constrained variational problem on a bending functional which gives a model of the shape transformation of erythrocyte.Izeki studied entoropy rigidity and convex compactness of Kleinian groups acting on real space forms. He obtained a partial resolution of a conjectire on the inequality between the Hausdorff dimension of the limit sets of convex co-compact Kleinian groups and the cohomological dimension of the groups.Nakagawa studied Bando-Calabi-Futaki characters and generalized some of properties which were known to Fano manifolds to general projective manifolds and their Kahler classes. Under certain assumption, he showed a vanishing of Bando-Calabi-Futaki characters on the Lie algebra of unipotent groups and the existence of lifts of Bando-Calabi-Futaki characters to group characters. Less
Bando研究了爱因斯坦指标在Kahler歧管和全体形态复杂载体束上的存在问题。人们认为,爱因斯坦指标和条件的存在之间必须存在良好的关系。他在连接它们的功能上获得了有用的公式。他还撰写了一篇论文,该论文显示了如何使用绿色功能来获得谐波几何对象。Nishikawa,与Keisuke Ueno(Yamagata)Univ共同使用。一个适当的谐波图是CII D14 D1到边界的CII D14 D1,并在边界上给出了非分类的Cr图,显示为Holomorphic.urakawa继续研究谐波图,Yang-Mills连接等,并推广了在图上工作的方法。在有限或无限的图上,他获得了拉普拉斯操作员光谱的结果,对GR的估计……更多的een函数和谐波映射的类似物。Ishida研究的真实风扇,这些风扇概括(理性)风扇与圆磨变化密切相关。他在真实的粉丝上介绍了外部代数的一类分级模块,并定义了双重函数。他获得了二元性和毒品双重性的对应物。塔卡吉(Takagi)研究了一个反应扩散系统,A。Gierer和H. Meinhardt为形态发生的基本模型和弯曲功能上的变异性问题所构成的基本模型,在弯曲功能上构成了erythrocyeigy and contrection and contrection.ize contraction.ize and contression.ize。作用真实空间形式的小组。他对凸的凸界限制组的不平等范围之间的不平等措施得到了部分分辨率。在某些假设下,他在单一群体的谎言代数上显示了Bando-Calabi-Futaki角色的消失,以及Bando-Calabi-Futaki角色的升力为组人物。较少的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Nayatani: "Patterson-Sullivan measure and conformally flat metrics" Mathematischte Zeitschrift. 225. 115-131 (1997)
S.Nayatani:“Patterson-Sullivan 测量和共形平坦度量”Mathematicischte Zeitschrift。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Urakawa and Y.Suzuki: "Eigenvalue pinching theorems on compact symmetric spaces" Proc.Amer.Math.Soc.126. 3065-3069 (1998)
H.Urakawa 和 Y.Suzuki:“紧对称空间上的特征值收缩定理”Proc.Amer.Math.Soc.126。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Urakawa: "Eigenvalue comparison theorems of the discrete Laplacians for a graph"Geometriae Dedicata. 74. 95-112 (1999)
H.Urakawa:“图的离散拉普拉斯算子的特征值比较定理”Geometriae Dedicata。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I.Takagi: "Stability of spiky patterns in an activator-inhibitor system"Proceedings of the Workshop : Nonlinear Partial Differential Equations and Related Topics. (1999)
I.Takagi:“激活剂-抑制剂系统中尖峰模式的稳定性”研讨会论文集:非线性偏微分方程和相关主题。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Nishikawa: "Homogeneous manifolds of negative curvature and harmonic maps"数理解析研究所講究録. 1104. 137-144 (1999)
S. Nishikawa:“负曲率和调和映射的齐次流形”数学研究所 Kokyuroku 1104. 137-144 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BANDO Shigetoshi其他文献
BANDO Shigetoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BANDO Shigetoshi', 18)}}的其他基金
Differential geometry of complex and almost complex manifolds
复流形和准复流形的微分几何
- 批准号:
20540057 - 财政年份:2008
- 资助金额:
$ 8.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of Harmonicity
调和几何
- 批准号:
14340021 - 财政年份:2002
- 资助金额:
$ 8.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Harmonic Maps, Geometric Rigidity, and Non-Abelian Hodge Theory
调和映射、几何刚性和非阿贝尔霍奇理论
- 批准号:
2304697 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Hydrodynamics of Liquid Crystals and Heat Flow of Harmonic Maps
液晶的流体动力学和谐波图的热流
- 批准号:
2247773 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Geometric structures on surfaces and harmonic maps
表面上的几何结构和调和图
- 批准号:
23KJ1468 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Comprehensive study of various geometries with harmonic maps to symmetric spaces as a core
以对称空间调和映射为核心的各种几何学的综合研究
- 批准号:
22K03304 - 财政年份:2022
- 资助金额:
$ 8.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast, large area, multiphoton exoscope (FLAME) for improving early detection of melanoma
快速、大面积、多光子外窥镜 (FLAME) 用于改善黑色素瘤的早期检测
- 批准号:
10687990 - 财政年份:2022
- 资助金额:
$ 8.77万 - 项目类别: