Complex Manifolds and Gauge Theory
复流形和规范理论
基本信息
- 批准号:09440027
- 负责人:
- 金额:$ 8.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bando studied the existence problems of Einstein metrics on Kahler manifolds and holomorphic complex vector bundles. It is believed that there must be good relations between the existence of Einstein metrics and stabilities. He obtained a useful formula on a functional which connects them. He also wrote a paper which shows how Green functions can be used to obtain harmonic geometric objects.Nishikawa, jointly with Keisuke Ueno (Yamagata Univ.), studied the Dirichlet problem at infinity for harmonic maps between homogeneous spaces of negative curvature, and the complex analyticity of harmonic maps between complex hyperbolic spaces. A proper harmonic map which is CィイD14ィエD1 upto boundary and gives non-degenerate CR map on the boundaries is shown to be holomorphic.Urakawa continued to study harmonic maps, Yang-Mills connections and etc., and generalized the methods to work on graphs. On finite or infinite graphs, he obtained results on the spectra of Laplace operators, the estimates on Gr … More een functions and the analog of harmonic maps.Ishida studied real fans which generalize (rational) fans which are closely related to toric varieties. He introduced a category of graded modules of exterior algebra over real fans and defined a dualizing functor. He obtained counterparts of Serre duality and Poincare duality.Takagi studied a reaction-diffusion system which is posed by A. Gierer and H. Meinhardt as a fundamental model of morphogenesis and a constrained variational problem on a bending functional which gives a model of the shape transformation of erythrocyte.Izeki studied entoropy rigidity and convex compactness of Kleinian groups acting on real space forms. He obtained a partial resolution of a conjectire on the inequality between the Hausdorff dimension of the limit sets of convex co-compact Kleinian groups and the cohomological dimension of the groups.Nakagawa studied Bando-Calabi-Futaki characters and generalized some of properties which were known to Fano manifolds to general projective manifolds and their Kahler classes. Under certain assumption, he showed a vanishing of Bando-Calabi-Futaki characters on the Lie algebra of unipotent groups and the existence of lifts of Bando-Calabi-Futaki characters to group characters. Less
Bando研究了卡勒流形和全纯复向量丛上的爱因斯坦度量的存在性问题,认为爱因斯坦度量的存在性和稳定性之间一定存在良好的关系,他还写出了一个有用的泛函公式。一篇论文展示了如何使用格林函数来获得调和几何对象。Nishikawa 与 Keisuke Ueno(山形大学)合作,研究了无穷远的狄利克雷问题负曲率齐次空间之间的调和映射,以及复双曲空间之间的调和映射的复解析性,C2D14D1到边界的真调和映射在边界上给出非简并CR映射,被证明是全纯的。Urakawa继续研究。调和映射、Yang-Mills 连接等,并推广了在有限或无限图上工作的方法,他获得了谱的结果。拉普拉斯算子、Gr … More een 函数的估计以及调和映射的模拟。石田研究了推广与环面簇密切相关的(有理)扇形的实扇形。他引入了关于实扇形的外代数的分级模块,并且定义了一个对偶函子。他获得了 Serre 对偶性和 Poincare 对偶性的量。Takagi 研究了 A. Gierer 和 H. Meinhardt 提出的反应扩散系统作为基本模型形态发生和弯曲泛函上的约束变分问题,给出了红细胞形状变换的模型。伊泽基研究了作用于实空间形式的克莱因群的熵刚性和凸紧性,他获得了关于不等式的猜想的部分解决。凸余紧克莱因群极限集的豪斯多夫维数和群的上同调维数。中川研究了Bando-Calabi-Futaki特征和在一定的假设下,他将 Fano 流形已知的一些性质推广到一般射影流形及其 Kahler 类,证明了单能群李代数上 Bando-Calabi-Futaki 特征的消失以及 Bando-Calabi 升力的存在性。 -Futaki 字符组字符较少。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Nayatani: "Patterson-Sullivan measure and conformally flat metrics" Mathematischte Zeitschrift. 225. 115-131 (1997)
S.Nayatani:“Patterson-Sullivan 测量和共形平坦度量”Mathematicischte Zeitschrift。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Urakawa and Y.Suzuki: "Eigenvalue pinching theorems on compact symmetric spaces" Proc.Amer.Math.Soc.126. 3065-3069 (1998)
H.Urakawa 和 Y.Suzuki:“紧对称空间上的特征值收缩定理”Proc.Amer.Math.Soc.126。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I.Takagi: "Stability of spiky patterns in an activator-inhibitor system"Proceedings of the Workshop : Nonlinear Partial Differential Equations and Related Topics. (1999)
I.Takagi:“激活剂-抑制剂系统中尖峰模式的稳定性”研讨会论文集:非线性偏微分方程和相关主题。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Urakawa: "Eigenvalue comparison theorems of the discrete Laplacians for a graph"Geometriae Dedicata. 74. 95-112 (1999)
H.Urakawa:“图的离散拉普拉斯算子的特征值比较定理”Geometriae Dedicata。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Nishikawa: "Homogeneous manifolds of negative curvature and harmonic maps"数理解析研究所講究録. 1104. 137-144 (1999)
S. Nishikawa:“负曲率和调和映射的齐次流形”数学研究所 Kokyuroku 1104. 137-144 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BANDO Shigetoshi其他文献
BANDO Shigetoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BANDO Shigetoshi', 18)}}的其他基金
Differential geometry of complex and almost complex manifolds
复流形和准复流形的微分几何
- 批准号:
20540057 - 财政年份:2008
- 资助金额:
$ 8.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of Harmonicity
调和几何
- 批准号:
14340021 - 财政年份:2002
- 资助金额:
$ 8.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Harmonic Maps, Geometric Rigidity, and Non-Abelian Hodge Theory
调和映射、几何刚性和非阿贝尔霍奇理论
- 批准号:
2304697 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Hydrodynamics of Liquid Crystals and Heat Flow of Harmonic Maps
液晶的流体动力学和谐波图的热流
- 批准号:
2247773 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Geometric structures on surfaces and harmonic maps
表面上的几何结构和调和图
- 批准号:
23KJ1468 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Comprehensive study of various geometries with harmonic maps to symmetric spaces as a core
以对称空间调和映射为核心的各种几何学的综合研究
- 批准号:
22K03304 - 财政年份:2022
- 资助金额:
$ 8.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast, large area, multiphoton exoscope (FLAME) for improving early detection of melanoma
快速、大面积、多光子外窥镜 (FLAME) 用于改善黑色素瘤的早期检测
- 批准号:
10365803 - 财政年份:2022
- 资助金额:
$ 8.77万 - 项目类别: