Geometry of Harmonicity

调和几何

基本信息

  • 批准号:
    14340021
  • 负责人:
  • 金额:
    $ 7.74万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2005
  • 项目状态:
    已结题

项目摘要

・Bando studied the locally hyperbolically completeness of almost complex manifolds, and also showed the admissibility condition of Einstein-Hermitian metrics can be replaced by a condition which is easier to check.・Nishikawa proposed a framework for a differential geometric proof of Hartshorne conjecture, and obtained the fundamental results. He has also conducted the differential geometric study on the foliation structures of CR-manifolds.・Kenmotsu has extended his study of the periodicity of the surfaces of revolution with periodic mean curvature in the 3-dimensional Euclidean space to the higher dimensional case, and obtained an easier alternate proof of Hsian's result on the classification and construction of the hyper-surfaces of revolution of constant mean curvature.・Takagi studied the dynamics of reaction-diffusion systems of activator-inhibitor type which model morphogenesis in biology, and investigated how various conditions reflect on the location of spikes in the case of dimension 1.・Urakawa studied Yang-Mills theory and also conducted a study which relates graph theory and Riemannian geometry.・Sunada studied the random walks on graphs as an application of the discrete geometric analysis, and established several results on periodic random walks on crystal lattices applying the large deviation theory.・Horihata studied the initial-boundary value problem on Landau-Lifshitz-Gilbert (LLG) equation which is a model equation of magnetics, and constructed a weak solution. If the dimension is greater than 2, the weak solution converges to a constant in the infinit time provided the boundary value is a constant.
・ Bando研究了几乎X歧管的倍增性,还显示了可接纳性的条件 - 温米三分之二的条件可以用ESIER进行检查。多种多样的人在三维欧几里得太空空间中对革命表面的周期性进行了研究平均曲率研究了尖峰的各种条件在维度1的情况下landau-lifshitz-gilbert(LLG)方程的初始界价值是磁性的模型方程,如果尺寸大于2个,则构建了一个弱解。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surfaces With Constant Mean Curvature
  • DOI:
    10.1090/mmono/221
  • 发表时间:
    2003-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Kenmotsu
  • 通讯作者:
    K. Kenmotsu
An obstruction for Chem class forms to be harmonic
Chem 类形式和谐的障碍
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W.-M.Ni;K.Suzuki;I.Takagi;H.Nakamura;H.Nakamura;S.Bando
  • 通讯作者:
    S.Bando
K.Kenmotsu: "Surfaces of revolution with periodic mean curvature"Osaka Jour.Math.. 40. 687-696 (2003)
K.Kenmotsu:“具有周期平均曲率的旋转表面”Osaka Jour.Math.. 40. 687-696 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yang-Mills connections in homogeneous principal fiber bundles
均匀主纤维束中的 Yang-Mills 连接
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Shimono;N.Koyama;M.Kawaguchi;H.Urakawa;H.Urakawa;H.Urakawa;H.Urakawa;H.Urakawa;H.Urakawa
  • 通讯作者:
    H.Urakawa
Globalsolutions to a one-dimensional nonlinear parabolic system modeling colonial formation by chemotactic bacteria
模拟趋化细菌菌落形成的一维非线性抛物线系统的全局解决方案
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BANDO Shigetoshi其他文献

BANDO Shigetoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BANDO Shigetoshi', 18)}}的其他基金

Differential geometry of complex and almost complex manifolds
复流形和准复流形的微分几何
  • 批准号:
    20540057
  • 财政年份:
    2008
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complex Manifolds and Gauge Theory
复流形和规范理论
  • 批准号:
    09440027
  • 财政年份:
    1997
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

The study of Kahler fibrations and its applications to Finsler geometry
卡勒纤维的研究及其在芬斯勒几何中的应用
  • 批准号:
    17540086
  • 财政年份:
    2005
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了