アノマリーマッチングに基づくゲージ理論と相構造の非摂動的研究
基于异常匹配的规范理论与相结构非微扰研究
基本信息
- 批准号:22KJ0599
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-03-08 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During this fiscal year, I focused on two main research activities:(1) With collaborators, I investigated the possibility of color confinement resulting from perturbative contributions. We explored the use of an imaginary angular velocity at a high temperature, which led to a perturbatively confined phase continuously connected to the conventional nonperturbative confined phase, as well as a perturbative deconfinement-confinement phase transition. This discovery establishes a perturbative laboratory for confinement physics where we can investigate many confinement-related phenomena perturbatively.(2) With collaborators, I challenged the conventional understanding of the conservation law of topological solitons. While the prevailing view is that solitonic symmetry is determined by homotopy groups, we discovered a far more sophisticated algebraic structure. We found a highly unconventional selection rule for the correlation function between line and point defect operators. Solitonic symmetry accounting for this cannot be group-like but non-invertible and depends on far finer topological data than homotopy groups. Besides, its invertible part is determined by some generalized cohomology like bordism, still instead of homotopy groups. This discovery also suggests a distinguished role of solitonic symmetry in understanding Abelian non-invertible symmetry, which may open up new avenues of inquiry and deepen our understanding of generalized symmetry.
在这个财政年度,我专注于两项主要的研究活动:(1)与合作者一起,我调查了扰动贡献引起的颜色限制的可能性。我们探索了在高温下使用假想的角速度的使用,从而导致连续连接到常规的非驱动限制相位的扰动相位相位,以及触觉扰动的反登录相变。这一发现建立了一个对限制物理学的扰动实验室,我们可以在其中研究许多与监禁相关的现象。(2)与合作者,我对拓扑孤子保护法的常规理解提出了质疑。虽然流行的观点是孤子对称性是由同质组决定的,但我们发现了更复杂的代数结构。我们发现线和点缺陷操作员之间的相关函数高度非常规选择规则。对此的孤子对称对称性不能像群体一样,而是不可固化的,并且取决于拓扑数据,而不是同型组。此外,它的可逆部分由一些广义的共同体学(例如bordism)决定,而不是同型组。这一发现还表明,孤子对称性在理解Abelian不可粘的对称性中的杰出作用,这可能打开了探究的新途径,并加深了我们对广义对称性的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solitonic symmetry beyond homotopy: invertibility from bordism and non-invertibility from TQFT
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shih-Hsuan Chen
- 通讯作者:Shih-Hsuan Chen
Generalized symmetry from the Homotopy Hypothesis
同伦假说的广义对称性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shi Chen;Kenji Fukushima;Yusuke Shimada;Shi Chen;Shi Chen
- 通讯作者:Shi Chen
Perturbative confinement in thermal Yang-Mills theories induced by imaginary angular velocity
虚角速度引起的热杨-米尔斯理论中的微扰约束
- DOI:10.1103/physrevlett.129.242002
- 发表时间:2023
- 期刊:
- 影响因子:8.6
- 作者:Shi Chen;Kenji Fukushima;Yusuke Shimada
- 通讯作者:Yusuke Shimada
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
陳 実其他文献
陳 実的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Real-time imaging analysis of hemostatic thrombus stabilization and its failure
止血血栓稳定及其失败的实时影像分析
- 批准号:
22K08153 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalization of risk value measures from the viewpoint of stochastic systems and its application to various types of risk assessment
从随机系统角度推广风险价值测度及其在各类风险评估中的应用
- 批准号:
21K03374 - 财政年份:2021
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cultivation management for retaining grain production in polluted farmland by controlling the mobility of heavy metals in soil
控制土壤重金属迁移以保产污染农田的耕作管理
- 批准号:
19H00961 - 财政年份:2019
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A new early life stress model targeted to the lateral habenula: The mechanism of pshychiatric disorder evoked by experience
针对外侧缰核的新的早期生活应激模型:经验诱发精神障碍的机制
- 批准号:
17K17747 - 财政年份:2017
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A novel effect of HGF: mechanisms of irreversible arrest of cancer cell proliferation
HGF 的新作用:不可逆地阻止癌细胞增殖的机制
- 批准号:
26440048 - 财政年份:2014
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)