Development of Approximation Algorithms with Theoretical Guarantee for Integer Programming Problem with Nonlinear Constraint

具有理论保证的非线性约束整数规划问题逼近算法的发展

基本信息

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
離散凸解析と最適化アルゴリズム
离散凸分析与优化算法
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    室田一雄;塩浦昭義
  • 通讯作者:
    塩浦昭義
Speed Scaling Scheduling Viewed from Submodular Optimization
从子模优化看速度扩展调度
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    塩浦昭義
  • 通讯作者:
    塩浦昭義
Computing the Convex Closure of Discrete Convex Functions
计算离散凸函数的凸闭包
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akiyoshi Shioura
  • 通讯作者:
    Akiyoshi Shioura
Stability and competitive equilibria in multi-unit trading networks with discrete concave utility functions
具有离散凹效用函数的多单位交易网络的稳定性和竞争均衡
  • DOI:
    10.1007/s13160-015-0175-7
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Ikebe Y. T; Sekiguchi; Y.; Shioura; A.;Tamura; A.
  • 通讯作者:
    A.
L凸関数の最小化アルゴリズム:離散凸解析と諸分野との繋がり
L凸函数的最小化算法:离散凸分析与各领域的联系
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    塩浦昭義
  • 通讯作者:
    塩浦昭義
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shioura Akiyoshi其他文献

Colored spanning graphs for set visualization
用于集合可视化的彩色跨越图
  • DOI:
    10.1016/j.comgeo.2017.06.006
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hurtado Ferran;Korman Matias;van Kreveld Marc;Loffler Maarten;Sacristan Vera;Shioura Akiyoshi;Silveira Rodrigo I.;Speckmann Bettina;Tokuyama Takeshi
  • 通讯作者:
    Tokuyama Takeshi
Note on time bounds of two-phase algorithms for L-convex function minimization
L 凸函数最小化两阶段算法的时间界限注意事项
  • DOI:
    10.1007/s13160-017-0246-z
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Murota Kazuo;Shioura Akiyoshi
  • 通讯作者:
    Shioura Akiyoshi
Preemptive models of scheduling with controllable processing times and of scheduling with imprecise computation: A review of solution approaches
具有可控处理时间的调度和具有不精确计算的调度的抢占模型:解决方法的回顾
  • DOI:
    10.1016/j.ejor.2017.08.034
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Shioura Akiyoshi;Shakhlevich Natalia V.;Strusevich Vitaly A.
  • 通讯作者:
    Strusevich Vitaly A.
Note on time bounds of two-phase algorithms for L-convex function minimization
L 凸函数最小化两阶段算法的时间界限注意事项
  • DOI:
    10.1007/s13160-017-0246-z
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Murota Kazuo;Shioura Akiyoshi
  • 通讯作者:
    Shioura Akiyoshi
Colored spanning graphs for set visualization
用于集合可视化的彩色跨越图
  • DOI:
    10.1016/j.comgeo.2017.06.006
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hurtado Ferran;Korman Matias;van Kreveld Marc;Loffler Maarten;Sacristan Vera;Shioura Akiyoshi;Silveira Rodrigo I.;Speckmann Bettina;Tokuyama Takeshi
  • 通讯作者:
    Tokuyama Takeshi

Shioura Akiyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shioura Akiyoshi', 18)}}的其他基金

Research on Discrete Convex Analysis Approach for Robust Nonlinear Integer Programming Problems
鲁棒非线性整数规划问题的离散凸分析方法研究
  • 批准号:
    18K11177
  • 财政年份:
    2018
  • 资助金额:
    $ 3.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Global Optimization Methods for Discrete DC Function Minimization Problems
开发离散直流函数最小化问题的全局优化方法
  • 批准号:
    15K00030
  • 财政年份:
    2015
  • 资助金额:
    $ 3.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Construction of practical algorithms for DC/DM global optimization
DC/DM全局优化实用算法构建
  • 批准号:
    19K11837
  • 财政年份:
    2019
  • 资助金额:
    $ 3.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Study of Nonlinear Functional Analysis and Nonlinear Problems Based on New Fixed Point Theory and Convex Analysis
基于新不动点理论和凸分析的非线性泛函分析及非线性问题研究
  • 批准号:
    15K04906
  • 财政年份:
    2015
  • 资助金额:
    $ 3.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An extended linear algebra library for electronic structure calculation and its optimization for many-core processors
用于电子结构计算的扩展线性代数库及其针对多核处理器的优化
  • 批准号:
    26286087
  • 财政年份:
    2014
  • 资助金额:
    $ 3.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Study of Nonlinear Functional Analysis and Nonlinear Problems Based on Fixed Point Theory and Convex Analysis
基于不动点理论和凸分析的非线性泛函分析和非线性问题的研究
  • 批准号:
    23540188
  • 财政年份:
    2011
  • 资助金额:
    $ 3.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on Efficient Constrained Optimization Methods using Neighborhood Structures and Approximation Models
利用邻域结构和逼近模型的高效约束优化方法研究
  • 批准号:
    22510166
  • 财政年份:
    2010
  • 资助金额:
    $ 3.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了