自由擬無限分解可能分布の展開
自由伪无限可分分布的展开
基本信息
- 批准号:23K03133
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
佐久間 紀佳其他文献
On limit spectral measures of Marchenko-Pastur limit of random matrices with dependent entries and an application of fluctuations
具有相关项的随机矩阵的Marchenko-Pastur极限的极限谱测度及其涨落的应用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
長谷川 彩子;佐久間 紀佳;吉田 裕亮 - 通讯作者:
吉田 裕亮
佐久間 紀佳的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('佐久間 紀佳', 18)}}的其他基金
レヴィヒンチン型表現からの自由確率論の研究
从 Levikhinthin 型表示中研究自由概率论
- 批准号:
19K03515 - 财政年份:2019
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
自由確率論におけるレヴィ過程の諸性質及び無限分解可能分布についての研究
自由概率论中Lévy过程和无限可分分布的性质研究
- 批准号:
08J00876 - 财政年份:2008
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
相似国自然基金
随机乘积和带状矩阵最大特征值的极限分布
- 批准号:12371157
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
随机矩阵理论与深度学习的智能配电网故障感知方法研究
- 批准号:62302034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机整数与随机排列的因子分布和Smith矩阵算术性质的研究
- 批准号:12371333
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于随机矩阵理论的大维非线性结构总体协方差矩阵推断研究
- 批准号:12301351
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机矩阵算法及其去随机化的研究
- 批准号:62372424
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Universal approaches in random matrix theory
随机矩阵理论中的通用方法
- 批准号:
24K06766 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
- 批准号:
23K20800 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Project 1: Deciphering the Dynamic Evolution of the Tumor-Neural Interface
项目1:破译肿瘤-神经界面的动态演化
- 批准号:
10729275 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
- 批准号:
2316836 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant