極小ラグランジュ部分多様体の幾何の新展開
最小拉格朗日子流形几何学的新进展
基本信息
- 批准号:23K03122
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
梶ヶ谷 徹其他文献
梶ヶ谷 徹的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('梶ヶ谷 徹', 18)}}的其他基金
シンプレクティック多様体および接触多様体内の部分多様体の研究
辛流形和接触流形内的子流形研究
- 批准号:
12J04238 - 财政年份:2012
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows
相似海外基金
Research of submanifolds by using the mean curvature flow and Lie group actions, and its application to theoretical physics
利用平均曲率流和李群作用研究子流形及其在理论物理中的应用
- 批准号:
22K03300 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on type II singularities of the mean curvature flow
平均曲率流II型奇点研究
- 批准号:
19K14521 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stability analysis of submanifold with symmetry
对称子流形的稳定性分析
- 批准号:
18K13420 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of fundamental properties of deformed Hermitian Yang-Mills connections and line bundle mean curvature flows
变形埃尔米特杨-米尔斯连接和线束平均曲率流的基本性质研究
- 批准号:
18K13415 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research of submanifolds in symmetric spaces and their time evolution along various curvature flows
对称空间子流形及其沿不同曲率流的时间演化研究
- 批准号:
18K03311 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)