Study on periodic surfaces using their representations by integrals of conformal one-forms
使用共形一式积分表示的周期曲面研究
基本信息
- 批准号:22540064
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2010
- 资助国家:日本
- 起止时间:2010 至 2012
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The correspondence between the Lopez-Ros deformation of a minimal surface in Euclidean (four-)space and the dressing transformations of two families of flat connections associated with a minimal surface was cleared by the joint work with Dr, Katrin Leschke.This result was presented in domestic or foreign conferences and seminars. A generalization of harmonic inverse mean curvature and their transforms was studied. The result was published in an international journal. An analog of the Schwarz lemma for super-conformal surfaces in four-dimenaional Euclidean space is obtained. A preprint about this result was written and submitted to an international journal. Generalizing the Riemann bilinear relation for holomorhphic one-forms, a condition for the existence of periodic surfaces was obtained. A preprint about this result was written and submitted to an international journal.
与Katrin Leschke博士的关节工作清除了欧几里得(四个)空间中最小表面(四个)空间中最小表面的洛杉矶变形与两个与最低表面相关的平坦连接家族的敷料转化之间的对应关系。这在家庭或外国会议和扬声器中呈现了这一结果。研究了谐波反向平均曲率及其变换的概括。结果发表在国际杂志上。获得了四维欧几里得空间中超符号表面的Schwarz引理的类似物。关于此结果的预印本被编写并提交给国际日报。概括了Riemann双线性关系以进行全体型单型,因此获得了周期性表面的存在条件。关于此结果的预印本被编写并提交给国际日报。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
曲面上のベクトル値完全一次微分形式
曲面上的向量值完全一阶微分形式
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Kurosu;Sanae and Moriya;Katsuhiro;Kokoro Tanaka;守屋 克洋;高瀬将道;高瀬将道;守屋 克洋;大黒顕司・高瀬将道;Katsuhiro Moriya;高瀬将道;Katsuhiro Moriya;Katsuhiro Moriya;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;Katsuhiro Moriya;守屋克洋
- 通讯作者:守屋克洋
球面への調和写像に付随するtt^*束
tt^* 与调和映射到球体相关的束
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Kurosu;Sanae and Moriya;Katsuhiro;Kokoro Tanaka;守屋 克洋;高瀬将道;高瀬将道;守屋 克洋;大黒顕司・高瀬将道;Katsuhiro Moriya;高瀬将道;Katsuhiro Moriya;Katsuhiro Moriya;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;Katsuhiro Moriya;守屋克洋;Katsuhiro Moriya;Katsuhiro Moriya;守屋克洋
- 通讯作者:守屋克洋
Description of a mean curvature sphere of a surface by quaternionic holomorphic geometry
用四元数全纯几何描述表面的平均曲率球面
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Kurosu;Sanae and Moriya;Katsuhiro;Kokoro Tanaka;守屋 克洋;高瀬将道;高瀬将道;守屋 克洋;大黒顕司・高瀬将道;Katsuhiro Moriya;高瀬将道;Katsuhiro Moriya
- 通讯作者:Katsuhiro Moriya
Surfaces of constant mean curvature with symmetry
具有对称性的恒定平均曲率曲面
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Kurosu;Sanae and Moriya;Katsuhiro;Kokoro Tanaka;守屋 克洋;高瀬将道;高瀬将道;守屋 克洋;大黒顕司・高瀬将道;Katsuhiro Moriya;高瀬将道;Katsuhiro Moriya;Katsuhiro Moriya;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;Katsuhiro Moriya;守屋克洋;Katsuhiro Moriya
- 通讯作者:Katsuhiro Moriya
Transforms for neutral surfaces and timelike surfaces
中性表面和类时表面的变换
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Kurosu;Sanae and Moriya;Katsuhiro;Kokoro Tanaka;守屋 克洋;高瀬将道;高瀬将道;守屋 克洋;大黒顕司・高瀬将道;Katsuhiro Moriya;高瀬将道;Katsuhiro Moriya;Katsuhiro Moriya;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;Katsuhiro Moriya
- 通讯作者:Katsuhiro Moriya
共 23 条
- 1
- 2
- 3
- 4
- 5
MORIYA Katsuhiro的其他基金
Property of super-conformal maps inherited from holomorphic maps and its application
全纯映射的超共形映射的性质及其应用
- 批准号:2540006325400063
- 财政年份:2013
- 资助金额:$ 1.75万$ 1.75万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study on Lagrangian surfaces in the complex Euclidean plane in terms of quaternionic holomorphic geometry
用四元全纯几何研究复欧几里得平面中的拉格朗日面
- 批准号:1974002819740028
- 财政年份:2007
- 资助金额:$ 1.75万$ 1.75万
- 项目类别:Grant-in-Aid for Young Scientists (B)Grant-in-Aid for Young Scientists (B)
相似海外基金
Construction of engineering system including testing method of a photovoltaic module with curved surface
包含曲面光伏组件测试方法的工程系统构建
- 批准号:22K0500622K05006
- 财政年份:2022
- 资助金额:$ 1.75万$ 1.75万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Studies on quasi-isometry classification of mapping class groups and their subgroups using distortion
利用畸变对映射类群及其子群进行准等距分类的研究
- 批准号:21K1379121K13791
- 财政年份:2021
- 资助金额:$ 1.75万$ 1.75万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
Discrete Differential Geometry Approach to Kinematics and Shape Feedback Control for Surface Robots
表面机器人运动学和形状反馈控制的离散微分几何方法
- 批准号:21K1412721K14127
- 财政年份:2021
- 资助金额:$ 1.75万$ 1.75万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
微分幾何学に現れる可積分系とその離散化
微分几何中出现的可积系统及其离散化
- 批准号:21K0323521K03235
- 财政年份:2021
- 资助金额:$ 1.75万$ 1.75万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
写像の特異点論からの曲面の研究とその応用
从地图奇点理论研究曲面及其应用
- 批准号:20K1431220K14312
- 财政年份:2020
- 资助金额:$ 1.75万$ 1.75万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists