Geometric invariants and model theory for singular unitary representations
奇异酉表示的几何不变量和模型理论
基本信息
- 批准号:22540002
- 负责人:
- 金额:$ 2.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2010
- 资助国家:日本
- 起止时间:2010 至 2012
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research project, we investigated realization of singular irreducible unitary representations of Lie groups through geometric approach. First, we have established the Fock model version of Dvorsky-Sahi theory on an extension of the theta duality correspondence for singular unitary highest weight representations of reductive Lie groups, by decomposing tensor products of fundamental representations in terms of geometric invariants for representations in question. Second, the singular orbits in prehomogeneous vector spaces arising from quaternionic structure of exceptional simple Lie groups of real rank 4 have been described by using data on root systems, and we have proved that the singular quarternionic unitary representations, due to Gross and Wallach, can be realized by geometric quantization of the corresponding quarternionic nilpotent K-orbits.
在该研究项目中,我们通过几何方法研究了谎言群体奇异不可还原统一表示的实现。首先,我们已经建立了Dvorsky-Sahi理论的Fock模型版本,以扩展减少谎言组的奇异统一性最高权重表示,通过分解有关表示表示形式的几何不变符中的基本表示的张量。其次,通过使用根系上的数据,通过使用数据来描述由Quaternionic Quartnion的Quaternionic syfor结构产生的固定前载体空间的单数轨道,我们已经证明,由于毛骨子和瓦拉赫(Gross and Wallach)的奇异隔离单位形式,可以通过相应的相应的Qualternionies nilililpotent k-orbits k-orbits k-orbits的几何量化来实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isotropy represen- tations and an extension of the theta correspondence
各向同性表示和 theta 对应的扩展
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:H. Mitsuhashi;H. Morita and I. Sato;山下博;山下博;Toshiaki Maeno;三橋秀生-森田英章;Hiroshi Yamashita
- 通讯作者:Hiroshi Yamashita
Irreducible decomposition of tensor products of Wallach representations and isotropy representations for singular unitary highest weight modules
奇异酉最高权模的 Wallach 表示和各向同性表示的张量积的不可约分解
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:H. Mitsuhashi;H. Morita and I. Sato;山下博;山下博
- 通讯作者:山下博
単純リー群の特異ユニタリ表現の幾何学的実現と随伴サイクル
简单李群和伴随循环的奇异酉表示的几何实现
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Akihiro Tsuchiya;Simon Wood;Akihiro Tsuchiya and Simon Wood;菅野孝史;Akihiro Tsuchiya and Simon Wood;Akihiro Tsuchiya;土屋昭博;土屋昭博;土屋昭博;山下博
- 通讯作者:山下博
Isotropy represen- tation associated with the discrete series
与离散序列相关的各向同性表示
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Kaoru Hiraga;Atsushi Ichino;Hiroshi Yamashita
- 通讯作者:Hiroshi Yamashita
Quantization of quaternionic nilpotent K-orbits
四元数幂零 K 轨道的量子化
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:T. Harima;T. Maeno;H.Morita;Y. Numata;A. Wachi and J.Watanabe;Kaoru Hiraga;山下 博;平賀郁;山下 博
- 通讯作者:山下 博
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMASHITA Hiroshi其他文献
Numerical study on the extent of flow regulation by collateral circulation of cerebral arteries
脑动脉侧支循环流量调节程度的数值研究
- DOI:
10.1299/jsmebiofro.2022.32.2c23 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
NISHIMURA Nozomi;YAMASHITA Hiroshi;OTANI Tomohiro;WADA Shigeo - 通讯作者:
WADA Shigeo
A concept on velocity estimation from magnetic resonance velocity images based on variational optimal boundary control
基于变分最优边界控制的磁共振速度图像速度估计概念
- DOI:
10.1299/jbse.22-00050 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
OTANI Tomohiro;YAMASHITA Hiroshi;IWATA Kazuma;ILIK Selin Yavuz;YAMADA Shigeki;WATANABE Yoshiyuki;WADA Shigeo - 通讯作者:
WADA Shigeo
YAMASHITA Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMASHITA Hiroshi', 18)}}的其他基金
Potential new food web route for coral reef ecosystems based on zooxanthellae
基于虫黄藻的珊瑚礁生态系统潜在的新食物网路线
- 批准号:
18H02270 - 财政年份:2018
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The relationship between hearing loss and vascular disorders in metabolic syndrome patients
代谢综合征患者听力损失与血管疾病的关系
- 批准号:
15K10751 - 财政年份:2015
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Heat Recirculating Type Ultra-micro Combustor with Porous Medium Injector
多孔介质喷射器热循环式超微型燃烧器的研制
- 批准号:
25420158 - 财政年份:2013
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The relationship between the metabolic syndrome and presbycusis
代谢综合征与老年性耳聋的关系
- 批准号:
24592551 - 财政年份:2012
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discharge pattern of symbiotic zooxanthellae from corals
珊瑚共生虫黄藻的排放模式
- 批准号:
23770032 - 财政年份:2011
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Investigation in the pathogenesis of metabolic syndrome with in vivo molecular imaging
体内分子影像研究代谢综合征发病机制
- 批准号:
23591298 - 财政年份:2011
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transformation and Reorganization of Ethnic Religions in the Diaspora with Reference to the dynamism of Hindu and Taoist Ritual Traditions
参考印度教和道教仪式传统的活力,散居海外的民族宗教的转型和重组
- 批准号:
22401017 - 财政年份:2010
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DEVELOPMENT OF NUMERICAL ANALYSIS METHOD BASED ON REACTIVE FLUID MECHANICS FOR INVESTIGATION OF COMBUSTION PHENOMENON IN POROUS MEDIUM
基于反应流体力学研究多孔介质燃烧现象的数值分析方法的发展
- 批准号:
22560193 - 财政年份:2010
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Relationship between Aging and Heat Shock Response in the Inner Ear
衰老与内耳热休克反应之间的关系
- 批准号:
21592157 - 财政年份:2009
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
In vivo molecular imaging analysis of pathophysiology in metabolic syndrome
代谢综合征病理生理学的体内分子影像分析
- 批准号:
20591052 - 财政年份:2008
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Constructions of representations of solvable Lie groups and non-commutative Fourier analysis
可解李群表示的构造和非交换傅里叶分析
- 批准号:
21540180 - 财政年份:2009
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Induction and restriction of representations
陈述的诱导和限制
- 批准号:
20540194 - 财政年份:2008
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the spherical function of discrete series representations from the point of view of the theory of automorphic forms
从自守型理论角度研究离散级数表示的球函数
- 批准号:
20540005 - 财政年份:2008
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modern study on homogeneous spaces and unitary representations via duality
通过对偶性对同质空间和单一表示的现代研究
- 批准号:
18204008 - 财政年份:2006
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Transformation groups for geometric structures, global geometric analysis, and theory of branching laws of infinite dimensional representations
几何结构的变换群、全局几何分析和无限维表示的分支定律理论
- 批准号:
18340037 - 财政年份:2006
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)