Arithmetic study of Calabi-Yau varieties with fibration
Calabi-Yau 品种纤维化的算术研究
基本信息
- 批准号:21540003
- 负责人:
- 金额:$ 2.25万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2009
- 资助国家:日本
- 起止时间:2009 至 2011
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied the arithmetic of Calabi-Yau threefolds with fibration by elliptic curves and/or K3 surfaces. The focus was put on Calabi-Yau threefolds of Delsarte type defined in a weighted projective space over a number field and also on Calabi-Yau threefolds considered by Voisin and Borcea in their construction of mirror symmetry. Taking into account the information of fibrations, we computed the cohomology, zeta functions and L-functions of such Calabi-Yau threefolds. We moreover obtained results on their modularity (automorphy) and on the height of their formal groups.
我们研究了Calabi-yau三倍的算术,并通过椭圆曲线和/或K3表面进行了振动。将重点放在Delsarte类型的Calabi-yau三倍上,该类型在一个数字字段的加权投影空间中定义,以及Voisin和Borcea在构建镜子对称性时考虑的Calabi-yau三倍。考虑到纤维化的信息,我们计算了此类calabi-yau三倍的共同体,Zeta功能和L功能。此外,我们还获得了它们的模块化(汽车)和正式组的高度的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Zeta-functions of Various Calabi-Yau threefolds
各种 Calabi-Yau 的 Zeta 函数三重
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Goto;Yasuhiro
- 通讯作者:Yasuhiro
On K3 Surfaces with Non-symplectic Involution
具有非辛对合的 K3 曲面
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Goto;Yasuhiro
- 通讯作者:Yasuhiro
Calculations on K3 surfaces with involution
包含对合的 K3 曲面的计算
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Goto;Yasuhiro
- 通讯作者:Yasuhiro
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GOTO Yasuhiro其他文献
GOTO Yasuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GOTO Yasuhiro', 18)}}的其他基金
Study on the formal groups of low-dimensional Calabi-Yau varieties
低维Calabi-Yau变体形式群的研究
- 批准号:
18K03200 - 财政年份:2018
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sensibility Information Process of Comfortable Environment for Music Listening. Computational Model of implicit memory and interaction between visual and auditory senses
舒适听音乐环境的感性信息过程。
- 批准号:
24500259 - 财政年份:2012
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of process of music cognition and influence of listening space in terms of implicit memory and attention
音乐认知过程及聆听空间对内隐记忆和注意力影响的研究
- 批准号:
18730468 - 财政年份:2006
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study of the arithmetic and geometry related to the L-functions of algebraic varieties
代数簇L-函数相关的算术和几何研究
- 批准号:
18540005 - 财政年份:2006
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic of Calabi-Yau threefolds with mirror symmetry
镜像对称的 Calabi-Yau 三重算术
- 批准号:
15540001 - 财政年份:2003
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
数論的対象の背後にある幾何学の発見・構築を通じたL関数・ガロア表現の研究
通过发现和构造算术对象背后的几何来研究 L 函数和伽罗瓦表示
- 批准号:
21H00969 - 财政年份:2021
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
代数的サイクルを用いたゼータ関数の研究
使用代数圈研究 zeta 函数
- 批准号:
20K03566 - 财政年份:2020
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on limit theorems for random walks on covering graphs
覆盖图随机游走极限定理研究
- 批准号:
19K23410 - 财政年份:2019
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Chern classes with modulus and higher structures of algebraic cycles
具有模数和更高代数环结构的陈氏类
- 批准号:
18K13382 - 财政年份:2018
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
葉層付き空間上の数論的位相幾何学の解析的精密化
叶状空间算术拓扑的解析细化
- 批准号:
17J02472 - 财政年份:2017
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows