Research of number theoretic properties of quantum invariants of knots and 3-manifolds and its application

结和3-流形量子不变量的数论性质研究及其应用

基本信息

  • 批准号:
    19540069
  • 负责人:
  • 金额:
    $ 1.5万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2007
  • 资助国家:
    日本
  • 起止时间:
    2007 至 2008
  • 项目状态:
    已结题

项目摘要

ザイフェルト球面に対する、B、C、D型リー環に付随する摂動的不変量の具体的な計算を実行することにより、有理ホモロジー球面の摂動的不変量とmatrix integralとの関連を調べ、ザイフェルト球面のLMO不変量の次数が低い部分について、ベルヌーイ数に関連した公式を与えた。さらに、レンズ空間について、B、C、D型リー環に付随する摂動的量子不変量と同値と考えられるfree energyの明確な公式を与え、その解析的性質を調べた。
通过对 Seifert 球的 B、C 和 D 型李代数相关的微扰不变量进行具体计算,我们研究了有理同调球的微扰不变量与矩阵积分之间的关​​系,并给出了以下公式:球形 LMO 不变量低阶部分的伯努利数。此外,对于透镜空间,我们给出了清晰的自由能公式,该公式被认为等效于与B、C和D型李代数相关的微扰量子不变量,并研究了其解析性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ohtsuki invariants for integral homology shperes and Habiro's cyclotomic expansion
积分同调域的 Ohtsuki 不变量和 Habiro 分圆展开式
A Formula for the Colored Jones Polynomial of 2-Bridge Knots
2 桥结的彩色琼斯多项式的公式
Colored Jones Polynomials with Polynomial Growth
具有多项式增长的彩色琼斯多项式
From the quantum dilogarithm function to The A-polynomial
从量子二对数函数到 A 多项式
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    樋上和弘;村上斉;樋上和弘;高田 敏恵;高田 敏恵;高田 敏恵;樋上和弘
  • 通讯作者:
    樋上和弘
A complete set of relations for Ohtsuki's invariants of integral homology 3-spheres
积分同调 3-球体 Ohtsuki 不变量的完整关系式
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    樋上和弘;村上斉;樋上和弘;高田 敏恵;高田 敏恵;高田 敏恵;樋上和弘;高田 敏恵
  • 通讯作者:
    高田 敏恵
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKATA Toshie其他文献

TAKATA Toshie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKATA Toshie', 18)}}的其他基金

Study on on properties and an extension of series and functions obtained from the quantum invariant of rational homology 3-shperes
有理同调3-球体量子不变量的级数和函数的性质及推广研究
  • 批准号:
    25400094
  • 财政年份:
    2013
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of perturbative quantum invariant of rational homology 3-spheres
有理同调3-球面微扰量子不变量的研究
  • 批准号:
    22540073
  • 财政年份:
    2010
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of relation among quantum invariant and number theoretic invariants and modular forms
量子不变量与数论不变量及模形式关系的研究
  • 批准号:
    17540067
  • 财政年份:
    2005
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

二次特性類と多重対数関数の幾何
多对数函数的二次性质和几何
  • 批准号:
    21K03240
  • 财政年份:
    2021
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
単体分割を用いた結び目と枠付き3次元多様体の量子不変量の研究
使用单纯分解研究结和框架三维流形的量子不变量
  • 批准号:
    19K14523
  • 财政年份:
    2019
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometry of secondary characteristic classes
次要特征类的几何
  • 批准号:
    17K05243
  • 财政年份:
    2017
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic behaviors of quantum invariants of knots and three-manifolds
结和三流形的量子不变量的渐近行为
  • 批准号:
    17K05239
  • 财政年份:
    2017
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum Topology of knots and 3-manifolds
结和三流形的量子拓扑
  • 批准号:
    16H02145
  • 财政年份:
    2016
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了