強擬凸領域のBergman核に現われる大域的双正則不変量

强赝凸区域Bergman核中出现全局双全纯不变量

基本信息

  • 批准号:
    07740104
  • 负责人:
  • 金额:
    $ 0.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 无数据
  • 项目状态:
    已结题

项目摘要

この研究の目標は強擬凸領域におけるベルグマン核の漸近展開から領域の大域的双正則不変量を構成することであった.研究の第一段階では漸近展開の-1次の係数の境界上での積分が大域的双正則不変量を与えることを示し,さらにこの積分がホモトピー不変,すなわち強擬凸領域の滑らか等変形に関して一定,であることを証明した.この証明には柏原によるベルグマン核の超局所解析の理論を用いた.柏原の理論を用いて積分不変量の値を評価することは困難である.そこで研究の第二段階ではこの積分不変量の具体例での計算を試みた.まず被積分関数であるベルグマン核の展開の係数を境界の田中-ウエブスター曲率を用いて表示した.この表示を積分することにより任意の2次元領域,およびケーラー多様体上の円盤束として与えられる3次元領域では積分不変量が0であることを示した.不変量が0にならない例の構成を目標としていたが,今のところそのような例は見つかっていない.さらに一般の領域で積分不変量を計算するには被積分関数をより単純な形で表示する必要がある.そのために第三段階ではベルグマン核の不変式論の応用を考えた.フェッファーマン等によって開発された放物型不変式論をもちいれば,ベルグマン核の漸近展開の係数を領域に付随するローレンツ計量の曲率のワイル不変式として表すことができる.被積分関数に対してこの手続きを実行し,ワイル不変式の具体的に書き下した.この表示は被積分関数と局所双正則不変量の具体的な関係を与えている.ワイル不変式の境界積分を計算する(評価する)のが今後の課題である.
本研究的目标是从强赝凸区域中伯格曼核的渐进展开构造该区域的全局双全纯不变量。我们证明 的积分给出了全局双正则不变量,并进一步证明了该积分是同伦不变量。 ,即关于强赝凸区域的平滑等变形的常数。我们使用了曼核的超局部分析理论。使用柏原的理论很难评估积分不变量的值。因此,在研究的第二阶段,我们首先使用这个积分不变量的具体例子进行计算。 ,我们使用边界的田中-韦伯斯特曲率来表示被积函数伯格曼核的展开系数,通过对这个表达式进行积分,我们可以得到任意二维区域和凯勒流形上的盘丛。我们证明了在给定的三维域中积分不变量为0。我们的目标是构造一个不变量不变为0的例子,但到目前为止还没有找到这样的例子。此外,在一般域中,我们已经证明积分不变量为0。为了计算积分不变量,需要以更简单的形式表示被积函数。为此,在第三步中,我们考虑了伯格曼核不变量理论的应用。由普费弗曼等人。使用抛物线不变量理论,我们可以将伯格曼核的渐近展开系数表示为附加到域的洛伦兹度量曲率的 Weyl 不变量。我们对被积函数执行此过程。 ,我们详细地写下了Weyl不变量,这个表示给出了被积函数和局部双全纯不变量之间的具体关系,未来的任务是计算(评估)Weyl不变量的边界积分,这是一个挑战。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Hirachi: "Geometric Complex Analysis" World Scientific(to appear),
K.Hirachi:《几何复分析》World Scientific(即将出现),
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

平地 健吾其他文献

Super critical CR invariant powers of sub-Laplacian
亚拉普拉斯超临界 CR 不变幂
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    平地 健吾
  • 通讯作者:
    平地 健吾
Logarithemic singularity of the Szego kernel and a global invariant of strictly pseudoconvex domains
Szego 核的对数奇异性和严格伪凸域的全局不变量
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    平地 健吾
  • 通讯作者:
    平地 健吾
Logarithmic singularity of the Szego kernel and a global invariant of strictly pseudoconvex domains
Szego 核的对数奇异性和严格伪凸域的全局不变量
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    平地 健吾
  • 通讯作者:
    平地 健吾
A link between the asymptotic expansions of the Bergman kernel and the Szego kernel
Bergman 核和 Szego 核的渐近展开式之间的联系
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    平地 健吾
  • 通讯作者:
    平地 健吾
Logarithmic singularity of the Szego kernel and a global invariant of strictly pseudoconvex domains
Szego 核的对数奇异性和严格伪凸域的全局不变量
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    平地 健吾
  • 通讯作者:
    平地 健吾

平地 健吾的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('平地 健吾', 18)}}的其他基金

Geometric analysis on complex manifolds
复杂流形的几何分析
  • 批准号:
    20H00116
  • 财政年份:
    2020
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
強擬凸領域の幾何に現われる不変式論
强赝凸区域几何中的不变理论
  • 批准号:
    06740116
  • 财政年份:
    1994
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
多変数函数論に現われる領域核函数の超局所解析
多元函数理论中出现的域核函数的超局部分析
  • 批准号:
    02740075
  • 财政年份:
    1990
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似国自然基金

基于Riemann-Hilbert方法的相关问题研究
  • 批准号:
    11026205
  • 批准年份:
    2010
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

高階放物型問題に対する漸近解析の新展開
高阶抛物型问题渐近分析的新进展
  • 批准号:
    22KJ0719
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Improvement of nonparametric inference based on kernel type estimation and resampling method, and its application
基于核类型估计和重采样方法的非参数推理改进及其应用
  • 批准号:
    22K11939
  • 财政年份:
    2022
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Gevreyクラスの多重強漸近展開と漸近解の研究
Gevrey类多重强渐近展开及渐近解的研究
  • 批准号:
    21K03284
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
欠測値を含む高次元および非正規データに対する漸近理論の開発とその応用
渐近理论的发展及其在高维和非正态数据(包括缺失值)中的应用
  • 批准号:
    21K11795
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Contact Riemannian manifolds and the hermitian Tanno connection
联系黎曼流形和厄米 Tanno 连接
  • 批准号:
    21K03219
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了