Rewriting systems (Groebner bases) on algebraic systems and their application
基于代数系统的重写系统(Groebner 基础)及其应用
基本信息
- 批准号:17540042
- 负责人:
- 金额:$ 1.06万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complete rewriting systems and Groebner bases give effective tools to solve algorithmical problems on algebraic systems and have been studied intensively.In the present research, we study finitely presented algebraic systems (algebraic systems defined by a finite number of generators and a finite number of relations), particularly, monoids and associative algebras by means of rewriting systems (Groebner bases). We develop a unified theory by treating Groebner bases as rewriting systems on additive groups We formulate a notion of critical pairs in this situation and clarify the role of them in the theory.Based on the theory of Groebner bases on associative algebras and projective modules on them, we construct projective resolutions, and develop the methods to compute the Hochschild cohomology. It makes possible to not only compute cohomology but also determine the ring structure of it by giving explicitly the cup products of cocycles.Moreover, we study finiteness of low dimensional cohomology. It is known since Squier that monoids has homological finiteness property FPn in every dimension n if they have complete rewriting systems. The finiteness for dimension 2 is related to the finite presentability of monoids, but details are not known. In this research, we study the one dimensional case and find that the finiteness of 1-dimensional cohomology is related to the finite generation and zigzags of monoidsMany properties of finitely presented monoids and groups are undecidable. In this research, we show that the triviality of the centers of monoids and groups are undecidable. This result is of interest because it means that even the 0-dimensional cohomology is not computable in general.
完整的重写系统和Groebner基础提供了有效的工具来解决代数系统上的算法问题,并已进行了深入研究。在本研究中,我们研究了有限呈现的代数系统(代数系统(代数系统,由有限数量的生成器和有限的关系定义),尤其是Monicoids and Assopiative Algebras Systems(Rebrite andrient)(Rebrient)(Rebrient)(Rebrient)(Rebrient)(Rebrient)(Rebrient)(我们通过将Groebner基础视为添加剂组的重写系统来发展统一的理论,在这种情况下,我们制定了关键对的概念,并阐明了它们在理论中的作用。基于Groebner理论基于关联代数及其对它们的投射模块的基础,我们对它们的构建投影解决方案进行了构建和制定方法,以构建Hochschschschschorlogy cohomology cohomology cohomology。不仅可以通过明确给出同伴的杯产物来确定其环结构。此外,我们还研究了低维共同体学的有限性。众所周知,Squier是Monoids具有完整的重写系统,在每个维度N中都具有同源性属性fpn。维度2的有限性与单粒细胞的有限呈现性有关,但细节尚不清楚。在这项研究中,我们研究了一个维度的情况,发现一维共同体的有限性与有限呈现的单体和基团有限的单体特性的有限产生和锯齿形有关。在这项研究中,我们表明,单体和群体中心的微不足道是不可确定的。该结果引起了人们的关注,因为这意味着即使是0维的共同体也是一般的计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cluttered orderings for the complete bipartite graph
- DOI:10.1016/j.dam.2005.06.005
- 发表时间:2005-11
- 期刊:
- 影响因子:0
- 作者:Meinard Müller;T. Adachi;Masakazu Jimbo
- 通讯作者:Meinard Müller;T. Adachi;Masakazu Jimbo
Combinatorial structure of group divisible designs and their costructions
群可分设计的组合结构及其构造
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Y.;Kobayashi;T.;Adachi (ed);Yuji Kobayashi;Yuji Kobayashi;Tomoko Adachi;足立智子;Yuji Kobayashi;Tomoko Adachi
- 通讯作者:Tomoko Adachi
Labelings for the complete bitartite graph and its applications
完整的bitartite图的标记及其应用
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Tomoko;Adachi;Yuji kobayashi;Tomoko Adachi
- 通讯作者:Tomoko Adachi
Rewriting systems, Grobner bases and syzygies on algebras and modules
重写系统、Grobner 基础以及代数和模的 syzygies
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Yuji;Kobayashi;Yuji Kobayashi
- 通讯作者:Yuji Kobayashi
Proc.of Algebra, Languages and Computation
代数、语言与计算学进展
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Y. Kobayashi;T. Adachi(ed.)
- 通讯作者:T. Adachi(ed.)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOBAYASHI Yuji其他文献
3D NUMERICAL SIMULATION ON DETACHING PROCESS OF ARMOR BLOCK ON THE TOP OF COASTAL LEVEE BY ACCURATE PARTICLE METHOD
海岸堤顶装甲块脱离过程的精确粒子法3D数值模拟
- DOI:
10.2208/kaigan.75.i_853 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
IKARI Hiroyuki;GOTOH Hitoshi;KOBAYASHI Yuji;FUJIWARA Satoshi - 通讯作者:
FUJIWARA Satoshi
KOBAYASHI Yuji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOBAYASHI Yuji', 18)}}的其他基金
Research on How to Understand and Share the Risk of Natural Disasters Focusing on Children, in the Home, School and Community
关于如何在家庭、学校和社区中理解和分担自然灾害风险的研究,重点关注儿童
- 批准号:
25420638 - 财政年份:2013
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A unified theory of Grobner bases and an application to syzygies of modules
Grobner基的统一理论及其在模协同中的应用
- 批准号:
21540048 - 财政年份:2009
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research and development of drugs of prevention and treatment for complication of diabetes targeting the receptor of advanced glycation end products(RAGE)
以晚期糖基化终末产物受体(RAGE)为靶点的糖尿病并发症防治药物的研发
- 批准号:
21390013 - 财政年份:2009
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Comprehensive Green Environmental Evaluation by Various Functions of Green Tract of Land
绿地各种功能的综合绿色环境评价
- 批准号:
19760429 - 财政年份:2007
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Investigation of the Stabilizing Mechanism of Collagen
胶原蛋白稳定机制的研究
- 批准号:
16390016 - 财政年份:2004
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Groebner bases for algebraic systems and homology, homotopy
代数系统和同源、同伦的 Groebner 基
- 批准号:
14540046 - 财政年份:2002
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The development of NMR methods for drug discovery targeting on ribosome recycling.
针对核糖体回收的药物发现核磁共振方法的发展。
- 批准号:
14370756 - 财政年份:2002
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structural analysis of BMP and BMP receptor
BMP和BMP受体的结构分析
- 批准号:
11470475 - 财政年份:1999
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Thermodynamic Analysis of Protein-Ligand interactions
蛋白质-配体相互作用的热力学分析
- 批准号:
10557216 - 财政年份:1998
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of biomolecular complex formation by heteronuclear multidimensional NMR
异核多维核磁共振研究生物分子复合物形成
- 批准号:
09307054 - 财政年份:1997
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似国自然基金
进程重写系统的互模拟等价性验证问题研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
进程重写系统的互模拟等价性验证问题研究
- 批准号:62102243
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
重写系统的基础理论及其在软件质量保障中的应用
- 批准号:61802259
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
罗巴算子与自由模上的项重写系统
- 批准号:11601199
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
可重写Petri网理论及在大规模动态分布式系统中的应用
- 批准号:61272093
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
相似海外基金
Automated Theorem Proving for Infinite Term Rewriting Systems
无限项重写系统的自动定理证明
- 批准号:
22K11904 - 财政年份:2022
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inductive thoeorems and ground confluence for conditional term rewriting systems
条件项重写系统的归纳定理和基本汇合
- 批准号:
18K11158 - 财政年份:2018
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem
特殊逆幺半群:子群、结构、几何、重写系统和应用题
- 批准号:
EP/N033353/1 - 财政年份:2016
- 资助金额:
$ 1.06万 - 项目类别:
Research Grant
Research on automated confluence proving for term rewriting systems
术语重写系统自动汇合证明研究
- 批准号:
22500002 - 财政年份:2010
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On algebraic specification languages based on modular rewriting systems
基于模块化重写系统的代数规约语言
- 批准号:
22700027 - 财政年份:2010
- 资助金额:
$ 1.06万 - 项目类别:
Grant-in-Aid for Young Scientists (B)