Global Theory of Singularities from the Viewpoint of Homotopy Theory

同伦论视角下的全局奇点理论

基本信息

  • 批准号:
    16340018
  • 负责人:
  • 金额:
    $ 4.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

The study of differentiable maps between manifolds and their singularities was begun by Whitney, Thom etc. in the middle of the 20th century and has developed a lot since then. In particular, local properties have been studied and some sophisticated theories have been established for such studies. However, global properties of maps that are essentially related to the structures of manifolds have not been studied so much in spite of their importance. In this research project, we aimed at solving various important open problems in the global theory of singularities from the viewpoint of homotopy theory in a larger framework. More precisely, we performed the following studies and obtained some results, which will be explained below :(a) Higher obstructions,(b) Classifying space of singular fibers,(c) Relationship between the differentiable structures of manifolds and singularities of maps.As to (a), Saeki and Iwase studied differentiable maps whose regular fibers consist of spheres, and obtained some homotopical properties of those manifolds which admit such maps. Furthermore, it has been clarified that these properties are related to higher obstructions to the existence of such maps. Moreover, Saeki and Sakuma studied the existence problem of fold maps and found that certain Postnikov invariants appear as higher obstructions. As to (b), Saeki constructed characteristic classes of surface bundles by using the theory of singular fibers of functions on surfaces. Furthermore, Saeki and Ohmoto succeeded in constructing a classifying space of singular fibers. As to (c), Saeki and Sakuma collected and arranged the known results about the relationship between the singularities of differentiable maps and differentiable structures of manifolds, and Saeki showed that in certain cases the elimination of definite fold singularities is possible independently of the differentiable structures of manifolds.
惠特尼(Whitney),汤姆(Thom)等在20世纪中叶开始了对流形和它们奇异性之间的可区分地图的研究,此后已经发展了很多。特别是,已经研究了局部特性,并为此类研究建立了一些复杂的理论。但是,尽管其重要性,但与歧管结构基本上相关的地图的全球性质尚未被研究。在这个研究项目中,我们旨在从更大的框架中的同型理论的角度来解决全球奇异性理论中的各种重要开放问题。更确切地说,我们进行了以下研究并获得了一些结果,将在下面进行解释:(a)较高的障碍物,(b)分类奇异纤维的空间,(c)地图的可区分结构与歧管的可区分结构之间的关系。与(a),Saeki和Iwase所研究的典型型号相关的典型的典型型号,以及这些普通的型号,这些典型的属性是供您使用的典型,这些图像均具有一定的典型作用,这些典型的作品是供您使用的典型,这些效率是供您使用的典型作品,地图。此外,已经澄清的是,这些特性与此类地图的存在有关。此外,Saeki和Sakuma研究了折叠地图的存在问题,发现某些后尼科夫不变的障碍物似乎是较高的障碍物。至于(b),Saeki通过使用表面上功能的奇异纤维理论构建了表面束的特征类别。此外,Saeki和Ohmoto成功地构建了一个分类的奇异纤维空间。至于(c),Saeki和Sakuma收集并安排了有关可区分图的奇异性与歧管的可区分结构之间关系的已知结果,而Saeki表明,在某些情况下,可以独立于歧管的不同结构而消除确定的折叠奇异性。

项目成果

期刊论文数量(83)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Calculus
  • DOI:
    10.1007/978-1-4471-0459-9_1
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheng-Shang Chang
  • 通讯作者:
    Cheng-Shang Chang
First order local invariants of apparent contours
表观轮廓的一阶局部不变量
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F.Aicardi;T.Ohmoto
  • 通讯作者:
    T.Ohmoto
L-S categories of simply-connected compact simple Lie groups of low rank
低阶单连紧单李群的 L-S 类
線形代数学
线性代数
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中村;郁
  • 通讯作者:
Codimension one embeddings of product of three spheres
三球体乘积的余维一嵌入
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.;Taniguchi;山田道夫(共著);T.Ohmoto et al.;T.Ohmoto;N.Iwase et al.;L.A.Lucas et al.
  • 通讯作者:
    L.A.Lucas et al.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAEKI Osamu其他文献

SAEKI Osamu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAEKI Osamu', 18)}}的其他基金

Innovative research of geometric topology and singularities of differentiable mappings
几何拓扑和可微映射奇异性的创新研究
  • 批准号:
    17H06128
  • 财政年份:
    2017
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Global Theory of Singularities of Differentiable Maps and its Applications
可微图奇异性的全局理论及其应用
  • 批准号:
    19340018
  • 财政年份:
    2007
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Differential Topology and Singularities
微分拓扑和奇点
  • 批准号:
    13640076
  • 财政年份:
    2001
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global Singularity Theory of Mappings and Various Structures of Manifolds
映射的全局奇点理论和流形的各种结构
  • 批准号:
    11440022
  • 财政年份:
    1999
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).

相似海外基金

Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Continuing Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
  • 批准号:
    2405191
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
  • 批准号:
    2427220
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
Conference: A Panorama of Homotopy theory
会议:同伦理论全景
  • 批准号:
    2316253
  • 财政年份:
    2023
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了