Global Theory of Singularities from the Viewpoint of Homotopy Theory

同伦论视角下的全局奇点理论

基本信息

  • 批准号:
    16340018
  • 负责人:
  • 金额:
    $ 4.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

The study of differentiable maps between manifolds and their singularities was begun by Whitney, Thom etc. in the middle of the 20th century and has developed a lot since then. In particular, local properties have been studied and some sophisticated theories have been established for such studies. However, global properties of maps that are essentially related to the structures of manifolds have not been studied so much in spite of their importance. In this research project, we aimed at solving various important open problems in the global theory of singularities from the viewpoint of homotopy theory in a larger framework. More precisely, we performed the following studies and obtained some results, which will be explained below :(a) Higher obstructions,(b) Classifying space of singular fibers,(c) Relationship between the differentiable structures of manifolds and singularities of maps.As to (a), Saeki and Iwase studied differentiable maps whose regular fibers consist of spheres, and obtained some homotopical properties of those manifolds which admit such maps. Furthermore, it has been clarified that these properties are related to higher obstructions to the existence of such maps. Moreover, Saeki and Sakuma studied the existence problem of fold maps and found that certain Postnikov invariants appear as higher obstructions. As to (b), Saeki constructed characteristic classes of surface bundles by using the theory of singular fibers of functions on surfaces. Furthermore, Saeki and Ohmoto succeeded in constructing a classifying space of singular fibers. As to (c), Saeki and Sakuma collected and arranged the known results about the relationship between the singularities of differentiable maps and differentiable structures of manifolds, and Saeki showed that in certain cases the elimination of definite fold singularities is possible independently of the differentiable structures of manifolds.
流形及其奇点之间的可微映射的研究是由Whitney、Thom等人在20世纪中叶开始的,此后得到了很大的发展。特别是,对局部特性进行了研究,并为此类研究建立了一些复杂的理论。然而,尽管本质上与流形结构相关的映射的全局属性很重要,但尚未得到如此多的研究。在这个研究项目中,我们旨在从更大框架中的同伦理论的角度解决全局奇点理论中的各种重要的开放性问题。更准确地说,我们进行了以下研究并获得了一些结果,这些结果将在下面解释:(a)更高的障碍物,(b)奇异纤维的分类空间,(c)流形的可微结构与映射的奇异性之间的关系。对于(a),Saeki和Iwase研究了其规则纤维由球体组成的可微映射,并获得了允许此类映射的流形的一些同伦性质。此外,已经澄清这些属性与此类地图存在的较高障碍有关。此外,Saeki和Sakuma研究了折叠图的存在问题,发现某些Postnikov不变量表现为更高的障碍物。对于(b),佐伯利用曲面函数奇异纤维理论构造了曲面丛的特征类。此外,佐伯和大本成功地构建了奇异纤维的分类空间。对于(c),Saeki和Sakuma收集并整理了关于可微映射的奇点与流形的可微结构之间关系的已知结果,并且Saeki表明,在某些情况下,消除确定的折叠奇点是可能的,与可微结构无关流形。

项目成果

期刊论文数量(83)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Calculus
  • DOI:
    10.1007/978-1-4471-0459-9_1
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheng-Shang Chang
  • 通讯作者:
    Cheng-Shang Chang
First order local invariants of apparent contours
表观轮廓的一阶局部不变量
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F.Aicardi;T.Ohmoto
  • 通讯作者:
    T.Ohmoto
L-S categories of simply-connected compact simple Lie groups of low rank
低阶单连紧单李群的 L-S 类
Codimension one embeddings of product of three spheres
三球体乘积的余维一嵌入
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.;Taniguchi;山田道夫(共著);T.Ohmoto et al.;T.Ohmoto;N.Iwase et al.;L.A.Lucas et al.
  • 通讯作者:
    L.A.Lucas et al.
Concordance des n〓uds de dimension 4
维度 4 的索引
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    加藤忠明;西牧謙吾;原田正平編著;M. Yamada;Y. Taniguchi;Y. -Y. Hayashi;S. Takehiro;V.Blanl〓il et al.
  • 通讯作者:
    V.Blanl〓il et al.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAEKI Osamu其他文献

SAEKI Osamu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAEKI Osamu', 18)}}的其他基金

Innovative research of geometric topology and singularities of differentiable mappings
几何拓扑和可微映射奇异性的创新研究
  • 批准号:
    17H06128
  • 财政年份:
    2017
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Global Theory of Singularities of Differentiable Maps and its Applications
可微图奇异性的全局理论及其应用
  • 批准号:
    19340018
  • 财政年份:
    2007
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Differential Topology and Singularities
微分拓扑和奇点
  • 批准号:
    13640076
  • 财政年份:
    2001
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global Singularity Theory of Mappings and Various Structures of Manifolds
映射的全局奇点理论和流形的各种结构
  • 批准号:
    11440022
  • 财政年份:
    1999
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).

相似国自然基金

研究模空间的代数拓扑方法及其在同伦论、凝聚态物理和时间序列分析中的应用
  • 批准号:
    12371069
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
(n-1)-连通(n+2)维有限CW-复形的同伦论及其在几何、物理中的应用
  • 批准号:
    12101290
  • 批准年份:
    2021
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
映射空间的同伦论
  • 批准号:
    11801544
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
同伦群的结构与计算
  • 批准号:
    11801082
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
非负截面曲率流形的几何与拓扑
  • 批准号:
    11701427
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Continuing Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
  • 批准号:
    2405191
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
  • 批准号:
    2427220
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
Conference: A Panorama of Homotopy theory
会议:同伦理论全景
  • 批准号:
    2316253
  • 财政年份:
    2023
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了