Mathematical studies for models of superconductivity

超导模型的数学研究

基本信息

  • 批准号:
    15340037
  • 负责人:
  • 金额:
    $ 5.38万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

1.We studied a one-dimensional Ginzburg-Landau equation in a ring, which is a mathematical model in a superconducting wire. When the wire is uniform, we revealed the global bifurcation structure for the two physical parameters and determined which solutions are minimizer of the energy functional. We also studied the configuration of the phase of solutions to the Ginzburg-Landau model in the wire with non-uniform thickness.2.We studied how the solution structure of a nonlinear equation is affected by the geometry of a domain. This approach would be developed to the Ginzburg-Ladau equation.3.An asymptotic behavior of the time evolutionary Ginzburg-Landau equations was studied. Some spectral result for the linearized operator of the equations was also obtained4.A variational method to the transition layer problem in reaction-diffusion equations was developed. This approach would be applied to a model of the superconductivity.5.Numerical computations for a BEC model and several Ginzburg-Landau models were achieved. We also discovered new pattern-dynamics arising in such nonlinear dissipative systems. In particular we proved the existence of solutions related to dynamics of front waves to reaction-diffusion equations.
1.我们在环中研究了一个一维的金茨堡 - 兰道方程,这是超导线中的数学模型。当电线均匀时,我们揭示了两个物理参数的全局分叉结构,并确定了哪些溶液是能量功能的最小化器。我们还研究了具有不均匀厚度的金属丝中溶液相对于金兹堡 - 兰道模型的配置。2。我们研究了非线性方程的溶液结构如何受域几何形状的影响。这种方法将被开发到金茨堡 - 拉杜方程。3.Timenight time ginzburg-landau方程的渐近行为。还获得了方程的线性化操作员的一些光谱结果。在反应扩散方程中开发了转换层问题的变异方法。这种方法将应用于超导性模型。5。BEC模型的数量计算,并实现了几种Ginzburg-Landau模型。我们还发现了这种非线性耗散系统中引起的新模式。特别是我们证明了与前波动力学与反应扩散方程相关的解决方案的存在。

项目成果

期刊论文数量(75)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Ninomiya: "Pest control may make the pest population explode"Z.Angew.Math.Phys.. Vol.54, No.5. 869-873 (2003)
H.Ninomiya:“害虫防治可能会使害虫种群爆炸”Z.Angew.Math.Phys.. Vol.54,No.5。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ikeda: "On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows"Communication on Pure and Applied Analysis. Vol.3, No.3. 381-390 (2003)
H.Ikeda:“Oseen 螺旋流中出现的非局部边界值问题的解决方案的全局分支”纯粹与应用分析交流。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Josephson half-quantized vortices in long square pi junctions around d-dot
d 点周围长方 pi 结处的约瑟夫森半量子化涡旋
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Maekawa;T.Tohyama et al.;H.Onodera;H.Matsueda;S.Maekawa 他;M.Kato;M.Machida;M.Kato et al.;M.Machida et al.;M.Machida;T.Koyama;M.Ako;M.Fujii;M.Kato;M.Machida
  • 通讯作者:
    M.Machida
Stable solutions to the Ginzburg-Landau equation with magnetic effect in a thin domain
Y.Morita: "Stable Solutions to the Ginzburg-Landau Equation with Magnetic Effect in a Thin Domain"Japan Journal of Industrial and Applied Mathematics. Vol.21-2(掲載予定). (2004)
Y.Morita:“薄域中具有磁效应的 Ginzburg-Landau 方程的稳定解”《日本工业与应用数学杂志》第 21-2 卷(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORITA Yoshihisa其他文献

MORITA Yoshihisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORITA Yoshihisa', 18)}}的其他基金

Mathematical studies for nonlocal effect on emergence of localized patterns in dissipative systems and applications
对耗散系统和应用中局部模式出现的非局部影响的数学研究
  • 批准号:
    22340022
  • 财政年份:
    2010
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theory of characterization and existence for entire solutions to reaction-diffusion equations in the multi-dimensional space.
多维空间中反应扩散方程整个解的表征和存在理论。
  • 批准号:
    21654025
  • 财政年份:
    2009
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Research study about auditing markets between USA and Japan
美国与日本审计市场研究
  • 批准号:
    20530428
  • 财政年份:
    2008
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical studies for bifurcation structures and transient dynamics of model equations in the superconductivity and BEC
超导和 BEC 模型方程分岔结构和瞬态动力学的数学研究
  • 批准号:
    19340026
  • 财政年份:
    2007
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Going-concern Information in auditor's report-empirical study
审计报告中的持续经营信息——实证研究
  • 批准号:
    16530307
  • 财政年份:
    2004
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vortex Solutions of the Ginzburg-Landau Equation in a Thin Domain
薄域中Ginzburg-Landau方程的涡解
  • 批准号:
    13640142
  • 财政年份:
    2001
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
証券取引法監査における特記事項の取扱に関する理論的・実証的研究
证券交易法审计中特殊事项处理的理论与实证研究
  • 批准号:
    11630157
  • 财政年份:
    1999
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability of Vortices and Numerical Analysis of Ginzburg-Landau Equation
涡稳定性与Ginzburg-Landau方程的数值分析
  • 批准号:
    11640141
  • 财政年份:
    1999
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Social Expectation of CPA Audit and Its Empirical Study
注册会计师审计的社会期望及其实证研究
  • 批准号:
    08453022
  • 财政年份:
    1996
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Change-point analysis for time series using asymptotic theory for symmetric statistics
使用对称统计渐近理论对时间序列进行变点分析
  • 批准号:
    20540140
  • 财政年份:
    2008
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MANY-FACETED ATTACK ON THE COMPLEX GINZBURG-LANDAU EQUATION
对复杂 GINZBURG-LANDAU 方程的多方面攻击
  • 批准号:
    17540172
  • 财政年份:
    2005
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global solution structure and the stability of nonlocal nonlinear second order boundary value problems with definite integrals
非局部非线性二阶定积分边值问题的全局解结构与稳定性
  • 批准号:
    15540220
  • 财政年份:
    2003
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DEPELOPMENTS IN OPERATOR THEORY TOWARDS EVOLUTION EQUATIONS
演化方程算子理论的发展
  • 批准号:
    14540187
  • 财政年份:
    2002
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of Self-organization Phenomena in Phase Transitions and Its Application to Nanotechnology
相变自组织现象的控制及其在纳米技术中的应用
  • 批准号:
    14550217
  • 财政年份:
    2002
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了