The global behavior of curves and surfaces in space forms
空间形式中曲线和曲面的全局行为
基本信息
- 批准号:15340024
- 负责人:
- 金额:$ 6.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We get the following results :1.A maximal surface which is given by the real part of holomorphic isotropic immersion into C^3 is called a maxface. As a joint work with K.Yamada, the head investigator Umehara gave a Weierstrass-type representation formula for maxfaces, and gave an Osserman-type ineqality for complete maxfaces. The equality holds if and only if all ends of the surfaces are properly embedded. Moreover, as a joint work with K.Saji, S.Fujimori, and K.Yamada, the head investigator Umehara gave a criterion for the cuspidal cross cap, and showed that generic singular points for maxfaces consists of cuspidal edge, swallowtail and cuspidal cross cap.2.As a joint work with K.Saji and K.Yamada, the head investigator Umehara studied the behavior of Gaussian curvature near the cuspidal edge and the swallowtail. In particular, the new geometric invariant on cuspidal edges called the singular curvature is introduced, and show that the integration of the singular curvature on the singular set is closely related to the Euler number of the surface.3.A curve γ in the real projective plane is called anti-convex if for each point p on the curve, there exists a line passing through the point which does not meet y other than p. As a joint work with G.Thorbergsson, the head investigator Umehara studied the inflection points on anti-convex curves, and showed that the number of inflection points I and the number of the independent double tangents D satisfies the relation I-2D=3.
我们得到以下结果:1.a最大表面由全体形态各向同性浸入c^3的实际部分称为maxface。作为与K.Yamada的联合合作,首席研究员Umehara为Maxfaces提供了Weierstrass型代表公式,并给出了Osserman型的INEQALITY,以实现完整的Maxfaces。当且仅当正确嵌入表面的所有末端时,平等才能保持。此外,作为与K.Saji,S.Fujimori和K.Yamada的联合合作,首席调查员Umehara给出了Cuspidal Cross上限的标准,并显示最大值的通用奇异点由Cuspidal Edgets,SwallowTaille和Cuspidal Cross Cap。研究了高斯曲率在尖边和燕尾附近的行为。 In particular, the new geometric invariant on cuspidal edges called the singular Curvature is introduced, and show that the integration of the singular curvature on the singular set is closely related to the Euler number of the surface.3.A curve γ in the real projective plane is called anti-convex if for each point p on the curve, there exists a line passing through the point which does not meet y other than p.作为与G.Thorbergsson的联合工作,负责人乌梅哈拉(Umehara)研究了对抗凸曲线的影响点,并表明影响点I的数量和独立双重切线D的数量满足了I-2D = 3的关系。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flat fronts in hyperbolic 3-space and their caustics
- DOI:10.2969/jmsj/1180135510
- 发表时间:2005-11
- 期刊:
- 影响因子:0.7
- 作者:M. Kokubu;W. Rossman;M. Umehara;Kotaro Yamada
- 通讯作者:M. Kokubu;W. Rossman;M. Umehara;Kotaro Yamada
Constructing mean curvature 1 surfaces in H^3 with irregular ends.
在 H^3 中构造具有不规则端部的平均曲率 1 曲面。
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:W.Rossmun;M.Umehara;K.Yamada
- 通讯作者:K.Yamada
M.Kokubu, et al.: "An elementrary proof of Small's formula for null curves in PSL(2,C) and an analogue for Legendrian curves in PSL(2,C)"Osaka J.Math.. 40. 697-715 (2003)
M.Kokubu 等人:“PSL(2,C) 中零曲线的 Small 公式的基本证明和 PSL(2,C) 中 Legendrian 曲线的类似物”Osaka J.Math.. 40. 697-715
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Maximal surfaces with singularities in Mikowski space
米科夫斯基空间中具有奇点的最大曲面
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:M.Umehara;K.Yamada
- 通讯作者:K.Yamada
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UMEHARA Masaaki其他文献
Isometric realization of cross caps as formal power series and its applications
形式幂级数交叉帽的等距实现及其应用
- DOI:
10.14492/hokmj/1550480642 - 发表时间:
2019 - 期刊:
- 影响因子:0.5
- 作者:
HONDA Atsufumi;NAOKAWA Kosuke;UMEHARA Masaaki;YAMADA Kotaro - 通讯作者:
YAMADA Kotaro
関数を熱流で流すと曲率が見える
当热量流过函数时可以看到曲率
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
HONDA Atsufumi;NAOKAWA Kosuke;UMEHARA Masaaki;YAMADA Kotaro;尾國 新一;Shouhei Honda;Kanako Oshiro;Shin-ichi Oguni;栗原大武;本多正平 - 通讯作者:
本多正平
UMEHARA Masaaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UMEHARA Masaaki', 18)}}的其他基金
Geometry of curves, surfaces and hypersurfaces with singularities
具有奇点的曲线、曲面和超曲面的几何形状
- 批准号:
22244006 - 财政年份:2010
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Geometry of curves and surfaces with singularities
具有奇点的曲线和曲面的几何
- 批准号:
19204005 - 财政年份:2007
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Research on surfaces of constant mean curvature one in hyperbolic space and its application
双曲空间中常平均曲率曲面的研究及其应用
- 批准号:
13640075 - 财政年份:2001
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of surfaces in space forms
空间形式的表面几何
- 批准号:
11640080 - 财政年份:1999
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Modern Approach to Geometry of Curves and Surtaces and its Applications
曲线和曲面几何的现代方法及其应用
- 批准号:
09640106 - 财政年份:1997
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
收缩线函数奇异点的计数、构造与分布
- 批准号:12301082
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于奇异点的量子纠缠态拓扑调控
- 批准号:12374323
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
多能带光学系统中共轭环绕奇异点的手性传输研究
- 批准号:12304345
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
具有高阶奇异点的关联非厄米系统及其应用研究
- 批准号:12304570
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微结构光纤回音壁模式微腔非厄密系统的奇异点调控机理及应用研究
- 批准号:12374353
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Nonlinear critical point theory near singular solutions
奇异解附近的非线性临界点理论
- 批准号:
EP/W026597/1 - 财政年份:2023
- 资助金额:
$ 6.66万 - 项目类别:
Research Grant
Revisiting Wallach's Rule: Approaches toward singular point interplaying molecular symmetries and electronic properties
重温瓦拉赫法则:研究奇点相互作用的分子对称性和电子特性的方法
- 批准号:
22H00314 - 财政年份:2022
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study of a movable singular point of a Hamiltonian system and Borel summability
哈密顿系统可动奇点及Borel可求和性研究
- 批准号:
20K03683 - 财政年份:2020
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of sound source separation method focusing on the singular point in spatio-temporal spectrum
时空谱奇异点声源分离方法研究进展
- 批准号:
19K04408 - 财政年份:2019
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unified understanding of relation between m-point singular solutions in Euler equation in a point-vortex system and vortex crystals composed of electron plasma strings
点涡系统欧拉方程m点奇异解与电子等离子体串组成的涡晶体关系的统一认识
- 批准号:
26800202 - 财政年份:2014
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)