Geometry of curves and surfaces with singularities
具有奇点的曲线和曲面的几何
基本信息
- 批准号:19204005
- 负责人:
- 金额:$ 14.89万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2007
- 资助国家:日本
- 起止时间:2007 至 2010
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research was focused on the geometry of curves and surfaces with singularities. We gave a useful criterion for A_k singular points on hypersurfaces, and applied it to the study of inflection points on hypersurfaces. This riterion enabled us to define A_k singularities of wave front without assuming the existence of an ambient space. In fact, we defined the notion "coherent tangent bundle", giving an intrinsic formulation for wave fronts and several other applications. Moreover, we investigated maximal surfaces in Lorentz-Minkowski space and constant mean curvature surfaces in de Sitter space, and constructed several interesting new examples with singularities but still having certain kind of completeness.Additionally, the head investigator and coinvestigators held several workshops (both domestic and international), which related in many fruitful discussions with geometers studying relating fields.
这项研究的重点是具有奇点的曲线和曲面的几何形状。我们给出了超曲面上 A_k 奇异点的有用准则,并将其应用于超曲面拐点的研究。这个公式使我们能够在不假设周围空间存在的情况下定义波前的 A_k 个奇点。事实上,我们定义了“相干切线丛”的概念,给出了波前和其他几个应用的内在公式。此外,我们研究了Lorentz-Minkowski空间中的最大曲面和德西特空间中的常平均曲率曲面,并构造了几个有趣的新例子,这些例子具有奇点但仍然具有一定的完整性。此外,首席研究员和共同研究员举办了多次研讨会(都是国内的)和国际),与研究相关领域的几何学家进行了许多富有成效的讨论。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Singularities of maximal surfaces
- DOI:10.1007/s00209-007-0250-0
- 发表时间:2005-10
- 期刊:
- 影响因子:0.8
- 作者:S. Fujimori;K. Saji;M. Umehara;Kotaro Yamada
- 通讯作者:S. Fujimori;K. Saji;M. Umehara;Kotaro Yamada
Mathematical Proceedings of the Cambridge Philosophical Society
- DOI:10.1017/s030500411400036x
- 发表时间:2014-11-01
- 期刊:
- 影响因子:0.8
- 作者:Girouard, Alexandre;Parnovski, Leonid;Sher, David A.
- 通讯作者:Sher, David A.
Flat Moebius strips of given isotopy type in R^3 whose centerlines are geodesic or lines of curvature
R^3 中给定同位素类型的平坦莫比斯带,其中心线是测地线或曲率线
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Y. Kurono;M. Umehara
- 通讯作者:M. Umehara
Flat surfaces with singularities in Euclidean 3-space
- DOI:10.4310/jdg/1246888486
- 发表时间:2006-05
- 期刊:
- 影响因子:2.5
- 作者:Satoko Murata;M. Umehara
- 通讯作者:Satoko Murata;M. Umehara
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UMEHARA Masaaki其他文献
Isometric realization of cross caps as formal power series and its applications
形式幂级数交叉帽的等距实现及其应用
- DOI:
10.14492/hokmj/1550480642 - 发表时间:
2019 - 期刊:
- 影响因子:0.5
- 作者:
HONDA Atsufumi;NAOKAWA Kosuke;UMEHARA Masaaki;YAMADA Kotaro - 通讯作者:
YAMADA Kotaro
関数を熱流で流すと曲率が見える
当热量流过函数时可以看到曲率
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
HONDA Atsufumi;NAOKAWA Kosuke;UMEHARA Masaaki;YAMADA Kotaro;尾國 新一;Shouhei Honda;Kanako Oshiro;Shin-ichi Oguni;栗原大武;本多正平 - 通讯作者:
本多正平
UMEHARA Masaaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UMEHARA Masaaki', 18)}}的其他基金
Geometry of curves, surfaces and hypersurfaces with singularities
具有奇点的曲线、曲面和超曲面的几何形状
- 批准号:
22244006 - 财政年份:2010
- 资助金额:
$ 14.89万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
The global behavior of curves and surfaces in space forms
空间形式中曲线和曲面的全局行为
- 批准号:
15340024 - 财政年份:2003
- 资助金额:
$ 14.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on surfaces of constant mean curvature one in hyperbolic space and its application
双曲空间中常平均曲率曲面的研究及其应用
- 批准号:
13640075 - 财政年份:2001
- 资助金额:
$ 14.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of surfaces in space forms
空间形式的表面几何
- 批准号:
11640080 - 财政年份:1999
- 资助金额:
$ 14.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Modern Approach to Geometry of Curves and Surtaces and its Applications
曲线和曲面几何的现代方法及其应用
- 批准号:
09640106 - 财政年份:1997
- 资助金额:
$ 14.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Development of differential geometric study of surfaces starting from the value distribution of the Gauss map
从高斯图的值分布出发进行曲面微分几何研究的发展
- 批准号:
23K03086 - 财政年份:2023
- 资助金额:
$ 14.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Variational problems and geometric analysis for hypersurfaces with singular points, and novel development of discrete surface theory
奇点超曲面的变分问题和几何分析以及离散曲面理论的新发展
- 批准号:
20H01801 - 财政年份:2020
- 资助金额:
$ 14.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of value distribution of Gauss maps and its applications to global property of immersed surfaces in space forms
高斯图值分布及其在空间形式浸没曲面全局特性中的应用研究
- 批准号:
19K03463 - 财政年份:2019
- 资助金额:
$ 14.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surface evolution equations with singular structure and boundary value problems
具有奇异结构和边值问题的表面演化方程
- 批准号:
19K14564 - 财政年份:2019
- 资助金额:
$ 14.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theoretical Analysis on Trimmed Surface Connection and Generation of high-quality Trimmed Surface from Measured Point Data
剪裁曲面连接理论分析及从测点数据生成高质量剪裁曲面
- 批准号:
19H02048 - 财政年份:2019
- 资助金额:
$ 14.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)