Study on Floer cohomology, mirror symmetry conjecture and singularity

Florer上同调、镜面对称猜想与奇异性研究

基本信息

  • 批准号:
    15340020
  • 负责人:
  • 金额:
    $ 7.1万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

We revised our paper on obstruction theory and deformation theory of Lagrangian Floer cohomology. This is a joint work with K. Fukaya, Y-G. Oh and K. Ono. In March 2006, we wrote up the manuscript (more than 800 pages) of Chapter 1,2,3,4,5,6,7 and 9 and made the preprint version which were distributed in the world. We established the transversality argument on the spaces with Kuranishi structure. This will play very important role to derive homotopy algebraic structure from various moduli spaces. During the revision, we define the potential function in the context of our-filtered A_∞ algebra and show that it coincides with the super potential of the Landau-Ginzburg model in physics literature. This was predicted by physists Hori and Vafa. In 2006, we have finished to write up the remaining chapters, Chapter 8 and Chapter 10. In Chapter 8, we study the case of semi-positive Lagrangian submanifolds. In this case, we can establish our results over Z or Z_2 coefficients. We apply the results to, for example, the Arnold-Givental conjecture. In Chapter 10, we investigate how the moduli space of pseudo holomorphic discs changes under Lagrangian surgery. We also describe the analytic detail. Moreover, we describe the action of cycles of the ambient symplectic manifold to the filtered A_∞ algebra in terms of L_∞ homomorphism. And we discovered a new relation between the torsion part of our Floer cohomology and Hofer distance of Hamilton isotopy.
我们修订了有关反对理论和拉格朗日浮子共同学的变形理论的论文。这是与K. Fukaya的联合作品,Y-G。哦和K. ono。 2006年3月,我们写了第1,2,3,4,5,6,7和9章的手稿(超过800页),并制作了在世界上分发的预印本版本。我们在具有库兰尼结构的空间上建立了横向论点。这将在从各种模量空间中得出同质代数结构的同性代数结构,将发挥非常重要的作用。在修订过程中,我们在过滤后的A_∞代数的背景下定义了潜在函数,并表明它与物理文献中Landau-Ginzburg模型的超级潜力相吻合。这是由Hori和Vafa物理学预测的。在2006年,我们已经完成了剩余的章节,第8章和第10章。在第8章中,我们研究了半阳性Lagrangian Submanifolds的案例。在这种情况下,我们可以通过z或z_2系数建立结果。我们将结果应用于例如Arnold-Givental概念。在第10章中,我们调查了伪全态光盘的模量如何在拉格朗日手术下变化。我们还描述了分析细节。此外,我们描述了环境符号歧管的循环在滤波的A_∞代数上的循环的作用。我们发现了我们的浮点数的扭转部分与汉密尔顿同位素的Hofer距离之间的新关系。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J-Holomorphic Curves and Symplectic Topology
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Mcduff;D. Salamon
  • 通讯作者:
    D. Mcduff;D. Salamon
Conformal field theories associated to regular chiral vertex operator algebras
与正则手性顶点算子代数相关的共形场论
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Murakami;Y.Yokota;Akihiro Tsuchiya
  • 通讯作者:
    Akihiro Tsuchiya
Geometric transitions, Chern-Simons gauge theory and Veneziano type amplitudes
几何转变、Chern-Simons 规范理论和 Veneziano 型振幅
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tohru Eguchi;Hiroaki Kanno
  • 通讯作者:
    Hiroaki Kanno
Hiroaki Kanno: "Harmonic forms and deformation of ALC metrics with spin(7) holonomy"Nucl.Phys.. B650. 449-474 (2003)
Hiroaki Kanno:“具有自旋(7)完整性的 ALC 度量的调和形式和变形”Nucl.Phys.. B650。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Symplectic 4-wani folds containing singular ratronal unves with (2,3)-cusp
辛 4-wani 褶皱,包含具有 (2,3)-尖点的单一 Ratronal Unves
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OHTA Hiroshi其他文献

OHTA Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OHTA Hiroshi', 18)}}的其他基金

Establishment of novel technique using primordial germ cells induced from embryonic stem cells
建立利用胚胎干细胞诱导的原始生殖细胞的新技术
  • 批准号:
    24680045
  • 财政年份:
    2012
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Floer theory, mirror symmetry conjecture and applications to symplectic geometry
弗洛尔理论、镜面对称猜想及其在辛几何中的应用
  • 批准号:
    23340015
  • 财政年份:
    2011
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on the pathogenesis of canine inflammatory bowel disease: investigation of the intestinal mucosal barrier function and intestinal mucosal cytokine expression.
犬炎症性肠病发病机制研究:肠粘膜屏障功能及肠粘膜细胞因子表达的研究。
  • 批准号:
    23780315
  • 财政年份:
    2011
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
'Tragedy of the Commons'Revisited: a FreeRising Mechanism via Altruistic Utility and Capital Accumulation
重温“公地悲剧”:通过利他效用和资本积累实现自由崛起机制
  • 批准号:
    22530229
  • 财政年份:
    2010
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Analysis on Sustainability of Resource Economy subject to Discrete Type Uncertainty
离散型不确定性下资源经济可持续性的理论分析
  • 批准号:
    19530153
  • 财政年份:
    2007
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pseudo-holomorphic map and Floer cohomology and their applications to symplectic geometry
伪全纯映射和Floer上同调及其在辛几何中的应用
  • 批准号:
    19340017
  • 财政年份:
    2007
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Study of Resource and Environment Policy and Dynamic Gains from Trade
资源环境政策与贸易动态收益研究
  • 批准号:
    16530118
  • 财政年份:
    2004
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DEVELOPMENTS OF DESIGNING METHOED OF CONTROL CHART TO ENHANCE DETECTION POWER IN HIGH-YIELD PROCESSES
提高高产过程检测能力的控制图设计方法的进展
  • 批准号:
    14580484
  • 财政年份:
    2002
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Floer homology, string theory and contact geometry
弗洛尔同调、弦理论和接触几何
  • 批准号:
    12640066
  • 财政年份:
    2000
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Optimal Investment Rule for Substainability of Resource Economies, Efficiency and Equity
资源经济、效率和公平可持续性的最优投资规则
  • 批准号:
    12630010
  • 财政年份:
    2000
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Floer Cohomology and Birational Geometry
弗洛尔上同调和双有理几何
  • 批准号:
    1811861
  • 财政年份:
    2018
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Continuing Grant
Floer cohomology of Lagrangian submanifolds with non-commutative group actions
具有非交换群作用的拉格朗日子流形的Floer上同调
  • 批准号:
    16K05120
  • 财政年份:
    2016
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Family Floer Cohomology
族Floer上同调
  • 批准号:
    1609148
  • 财政年份:
    2016
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Standard Grant
Symplectic Floer cohomology, mirror symmetry and gauge theory
辛弗洛尔上同调、镜像对称和规范理论
  • 批准号:
    1406418
  • 财政年份:
    2014
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Standard Grant
Lagrangian Floer cohomology and Khovanov homology
拉格朗日弗洛尔上同调和科万诺夫同调
  • 批准号:
    EP/H035303/1
  • 财政年份:
    2010
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了