Residues on Singular Varieties
单一品种的残留
基本信息
- 批准号:15340016
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The head investigator and the others did research on residues on singular varieties. More specifically :1.We developed a theory of residues of Chern classes of vector bundles on singular varieties with respect to collections of sections. We also gave explicit expressions (analytic, algebraic and topological) of the residues at an isolated singular point.2.We introduced the notion of multiplicity for functions on singular varieties and proved a generalization of a formula of Iversen for holomorphic maps onto a Riemann surface.3.In the case of the top Chern class, the Thom class contains local informations and produces analytic., algebraic and topological invariants through the Bochner-Martinelli kernel. We found the "intermediate Thom classes" for other Chern classes.4.In a collaboration with J.-P.Brasselet and J.Seade, we proved a "proportionality theorem" for the local Euler obstruction of 1-forms on singular varieties.5.In a collaboration with F.Bracci, we prove the existence of parabolic curves at a fixed point of a holomorphic self-map of a singular complex surface, as an application of our residue theory. For this, we developed the intersection theory of curves in singular surfaces, using the Grothendieck residues on singular varieties.6.Besides the above, Ito obtained important results on the Poincare-Hopf type theorems, Ohmoto on the characteristic classes of algebraic stacks, Oka on the fundamental group of the complement of algebraic curves, Tajima on Milnor and Tjurina numbers, Yokuraon motivic characteristic classes, respectively.
首席调查员和其他人对奇异品种的残留物进行了研究。更具体地说:1。我们开发了一种关于奇异品种的Chern类别载体捆绑包的残基理论,相对于部分集合。我们还给出了一个孤立的奇异点的残留物的明确表达(分析,代数和拓扑)。2。我们引入了在奇异品种上的功能的多样性的概念,并证明了iversen公式的概括性的概括性,用于整体群体的综合型群体。通过Bochner-Martinelli内核不变。我们找到了其他Chern类的“中间班级”。4。在与J.-P. Brasselet和J.Seade的合作中,我们证明了当地的Euler障碍物在奇异品种上的1型障碍物的“相称性理论”。5。在与F.Bracci的合作中,我们证明了与Parabolic Curves Ane Serforce nefervence a holor n holor a holom and holom and holom and holom a hol sermosor a sermosor a seraportion的应用。残留理论。 For this, we developed the intersection theory of curves in singular surfaces, using the Grothendieck residues on singular varieties.6.Besides the above, Ito obtained important results on the Poincare-Hopf type theorems, Ohmoto on the characteristic classes of algebraic stacks, Oka on the fundamental group of the complement of algebraic curves, Tajima on Milnor and Tjurina数字,洋子动机特征类别。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classifying singular Legendre curves by contactomorphisms
通过接触同态对奇异勒让德曲线进行分类
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Y. Ebihara;Y. Miyoshi;K. Asamura;et al;S.Severmann et al.;G.Ishikawa
- 通讯作者:G.Ishikawa
T.Suwa: "Characteristic classes of singular varieties"Sugaku Expositions, A.M.S.. 16. 153-175 (2003)
T.Suwa:“奇异品种的特征类别”Sugaku Expositions,A.M.S.. 16. 153-175 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I.Shimada: "Fundamental groups of algebraic fiber spaces"Comment.Math.Helu.. 78. 335-362 (2003)
I.Shimada:“代数纤维空间的基本群”评论.Math.Helu.. 78. 335-362 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Supersingular K3 surfaces in odd characteristic and sextic double plane
奇特征和六重双平面中的超奇异 K3 表面
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:大本 亨;T.Ohmoto;諏訪 立雄;伊藤 敏和;岡 睦雄;田島 慎一;與倉 昭治;T.Suwa;T.Ito;M.Oka;S.Tajima;S.Yokura;T.Suwa;I.Nakamura;G.Ishikawa;G.Ishikawa;I.Shimada;I.Shimada
- 通讯作者:I.Shimada
T.Suwa: "Multiplicities of functions on singular varieties"Intern.J.Math.. 14. 541-558 (2003)
T.Suwa:“奇异变体上函数的多重性”Intern.J.Math.. 14. 541-558 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUWA Tatsuo其他文献
SUWA Tatsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUWA Tatsuo', 18)}}的其他基金
Theory of residues associated with localization of characteristic classes and its applications
与特征类定位相关的残差理论及其应用
- 批准号:
16K05116 - 财政年份:2016
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Residue theory on singular varieties and its applications
奇异品种残差理论及其应用
- 批准号:
24540060 - 财政年份:2012
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating non-use value of natural environment by using Kuhn Tucker model
利用Kuhn Tucker模型估算自然环境的非使用价值
- 批准号:
23710050 - 财政年份:2011
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Localization theory of Atiyah classes and its applications
Atiyah类定位理论及其应用
- 批准号:
21540060 - 财政年份:2009
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Residues on Singular Varieties
单一品种的残留
- 批准号:
18340015 - 财政年份:2006
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Characteristic Classes of Singular Varieties
单一品种特征类研究
- 批准号:
11440014 - 财政年份:1999
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Complex Analytic Geometry and Singularity Theory
复解析几何与奇异性理论研究
- 批准号:
07454011 - 财政年份:1995
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Complex Analytic Geometry and Singularity Theory
复解析几何与奇异性理论研究
- 批准号:
02452001 - 财政年份:1990
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Theory of residues associated with localization of characteristic classes and its applications
与特征类定位相关的残差理论及其应用
- 批准号:
16K05116 - 财政年份:2016
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Residues on Singular Varieties
单一品种的残留
- 批准号:
18340015 - 财政年份:2006
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Characteristic Classes of Singular Varieties
单一品种特征类研究
- 批准号:
11440014 - 财政年份:1999
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)