Research on Complex Analytic Geometry and Singularity Theory
复解析几何与奇异性理论研究
基本信息
- 批准号:07454011
- 负责人:
- 金额:$ 4.99万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research was done mainly on the indices and residues of vector fields and holomorphic singular foliations, the charactreistic classes of singular varieties, the Cech-de Rham cohomology theory and integration theory on stratified spaces. Let us be more specific.(1) Collaboration with J.Seade on the residue theorem for the Baum-Bott residues of foliations on open manifolds and its applications. The joint paper on this has been published in Mathematische Annalen.(2) In another collaboration with J.Seade, we investigated various indices of vector fields on varieties with isolated singularities and we obtained an "adjunction formula" for such varieties. The results are written in a joint paper.(3) As an application of the formula in (2), a formula for the Chem-Schwartz-MacPherson class of a local complete intersection variety with isolated singularities is obtained. The result has been published in C.R.Acad.Sci., Paris.(4) As a generalization of the formula in (2), in a collaboration with D.Lehmann and J.Seade, we introduced a generalized Milnor number and obtained a similar formula for varieties with possibly non-isolated singularities. The results are written in a joint paper.(5) In a joint work with B.Khanedani, we studied the invariants of singular holomorphic foliations on complex surfaces and obtained various formulas. The joint paper on these will appear in Hokkaido Math.J.(6) In a joint work with T.Honda, we proved a residue formula for meromorphic functions on complex surfaces and gave some applications. The results are written in a joint paper.(7) In a collaboration with J.-P.Brasselet, we studied the Nash modification associated with a sinular holomorphic foliation and, as an application, we proved a conjecture of Baum-Bott in some cases. The results are written in a joint paper.
这项研究主要是关于矢量场和全态奇异叶子的指标和残基进行的,奇异品种的特征类别,Cech-DE Rham的同时协同理论和对分层空间的整合理论。让我们更具体。(1)与J.Seade在残留定理上为开放式流形及其应用中的叶子残留物的残留定理进行合作。有关此的联合论文已发表在Mathematische Annalen。(2)在与J.Seade的另一项合作中,我们研究了具有孤立奇异性品种的矢量领域的各种指数,我们获得了此类品种的“相邻公式”。结果写在联合纸中。(3)作为(2)中公式的应用,获得了与局部完整交点的化学公式,并获得了与孤立的奇异性。该结果已在巴黎的C.R.Acad.Sci。(4)作为(2)中公式的概括(4)与D.Lehmann和J.Seade合作,我们引入了广义Milnor数字,并获得了类似的品种的公式,并具有可能非相差的奇异性。结果写在联合纸中。(5)在与b.khanedani的联合作品中,我们研究了复杂表面上奇异的全态叶子的不变性,并获得了各种公式。有关这些的联合论文将出现在北海道数学(6)中,在与T.Honda的联合作品中,我们证明了在复杂表面上的Meromorthic功能的残留公式,并提供了一些应用。结果是用联合论文写的。(7)在与J.-P.Brasselet的合作中,我们研究了与Sinular Holomormorphic Foliation相关的NASH修饰,并且在某些情况下,我们证明了Baum-Bott的猜想。结果写在联合论文中。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Kawazumi: "The primary approximation to the cohomology of the moduli space of curves and cocycles for the stable cohomology classes" Math.Research Lett.3. 629-641 (1996)
N.Kawazumi:“稳定上同调类的曲线和余循环模空间上同调的主要近似”Math.Research Lett.3。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Ishikawa: "Develspable of a ucrve and determinacy elatuie to osaulation type" Quart.J.Meth.Oxford. 46. 437-451 (1995)
G.Ishikawa:“对 osaulation 类型的 ucrve 和确定性 elatuie 的可开发性”Quart.J.Meth.Oxford。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Izumiya and W.Marar: "On topologically stalele siugular seufacer in a 3-warifold" J.of Geonetry. 52. 108-119 (1995)
S.Izumiya 和 W.Marar:“论 3-warifold 中的拓扑陈旧 siugular seufacer”J.of Geonetry。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N. A' Campo: "Geometry of Nane curves via Tschirnhausen tower" Osaka J. Math.33. 1003-1004 (1997)
N. A Campo:“Tschirnhausen 塔的 Nane 曲线几何”Osaka J. Math.33。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
D.Lehmann,K and T.Suwa: "Residues of holomorphic vector fields velative to singular invariant subvarietics" J.of Rift.Geom.41. 165-192 (1995)
D.Lehmann、K 和 T.Suwa:“与奇异不变子变量相关的全纯向量场的残差”J.of Rift.Geom.41。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUWA Tatsuo其他文献
SUWA Tatsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUWA Tatsuo', 18)}}的其他基金
Theory of residues associated with localization of characteristic classes and its applications
与特征类定位相关的残差理论及其应用
- 批准号:
16K05116 - 财政年份:2016
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Residue theory on singular varieties and its applications
奇异品种残差理论及其应用
- 批准号:
24540060 - 财政年份:2012
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating non-use value of natural environment by using Kuhn Tucker model
利用Kuhn Tucker模型估算自然环境的非使用价值
- 批准号:
23710050 - 财政年份:2011
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Localization theory of Atiyah classes and its applications
Atiyah类定位理论及其应用
- 批准号:
21540060 - 财政年份:2009
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Residues on Singular Varieties
单一品种的残留
- 批准号:
18340015 - 财政年份:2006
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Residues on Singular Varieties
单一品种的残留
- 批准号:
15340016 - 财政年份:2003
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Characteristic Classes of Singular Varieties
单一品种特征类研究
- 批准号:
11440014 - 财政年份:1999
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Complex Analytic Geometry and Singularity Theory
复解析几何与奇异性理论研究
- 批准号:
02452001 - 财政年份:1990
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
CAREER: Singular Riemannian Foliations and Applications to Curvature and Invariant Theory
职业:奇异黎曼叶状结构及其在曲率和不变理论中的应用
- 批准号:
2042303 - 财政年份:2021
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
Singular Riemannian foliations and collapse
奇异黎曼叶状结构和塌陷
- 批准号:
441806116 - 财政年份:2020
- 资助金额:
$ 4.99万 - 项目类别:
Priority Programmes
Invariant Theory of singular Riemannian foliations.
奇异黎曼叶状结构的不变理论。
- 批准号:
318342259 - 财政年份:2016
- 资助金额:
$ 4.99万 - 项目类别:
Research Grants
Singular Foliations: Desingularization and the Baum-Connes Conjecture
奇异叶状结构:去奇异化和鲍姆-康尼斯猜想
- 批准号:
272988935 - 财政年份:2015
- 资助金额:
$ 4.99万 - 项目类别:
Research Grants
Singular metric spaces and foliations (B01)
奇异度量空间和叶状结构 (B01)
- 批准号:
179671679 - 财政年份:2010
- 资助金额:
$ 4.99万 - 项目类别:
Collaborative Research Centres