Research on Global Properties and Correlation of Solutions to Functioanl Equations and Difference Equations

函数方程和差分方程解的全局性质及相关性研究

基本信息

  • 批准号:
    14540158
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

1.The existence conditions of bounded solutions of the linear differential equation with a periodic forcing function are obtained by using the difference equations. The itteration of the period solution map makes a sequence which is a solutions of a linear difference equation. The general term of this sequence is represented by the initial term, the mean of the periodic forcing function and the eigenvalues of the coefficient matrix. The boundedness and periodicity of solutions are determined completely by initial values ant the mean of the forcing functions. 2.Linear functional differential equations in a Banach space are transformed to opertor equations on the space of bounded continuous functions. The spectrum of the solutions are computed and the existence of solutions whose spectrum satisfies the period conditions are computed and the existence of solutions whose spectrum satisfies the period conditions are obtained. 3.The general variation of constants formula is completely obtain … More ed on the phase space for linear periodic functional differential equations. The formula is applied for the existence of periodic solutions. 4.Analytic solutions of difference equations are applied to the research in the population and environmental sciences. 5.The numerical simulation algorithm is developed based on the finite element method that reduces the radiation and scattering problem in an unbounded region into the one in a bounded region using aritificial boundary. 6.A fundamental solution method applied to reduced wave problems in the exterior domain of disc has been investigated. The case of equi-distant equally phased arrangement of source points and collocation points has been studied from the view points of both theoretical analysis and numerical experiment. 7.Pertabations of eigenvalues are studied for structural-acoustic system. Well-posedness of the Cauchy problem is studied in Gevrey class for some weakly hyperbolic equations of higher order. Fixed point theorems are applied to the stability theory of solutions of integral differential equations. Less
1。iTions。时期映射的序列是线性差异方程的解决方案解决方案是通过Banach空间中的初始竞争力确定的,将解决方案的opertor方程式转换为溶液的范围,并且存在的溶液的存在。 Orula适用于周期性解决方案的存在。外部盘的问题已经研究了源点的相同情况。在Gevrey类中,研究了一些弱叠加的ixed Point定理。

项目成果

期刊论文数量(74)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Murakami, T.Naito, Nguyen V.M.: "Massera's theorem for almost periodic solutions of functional differential equations"J.Math.Soc.Japan. 56. 242-268 (2004)
S.Murakami、T.Naito、Nguyen V.M.:​​“函数微分方程的几乎周期解的 Massera 定理”J.Math.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Ushijima: "Equi-distant collocation method for periodic functions with kernel expression"Pro.Fifth China-Japan Joint Seminar on Numerical Math.. 220-226 (2002)
T.Ushijima:“带核表达式的周期函数的等距配置方法”Pro.第五届中日数值数学联合研讨会.220-226(2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Hino, S.Murakami: "Total stability and the existence of almost periodic integrals for almost periodic general process"Vietnam J.Math.. 30. 425-435 (2002)
Y.Hino, S.Murakami:“几乎周期一般过程的完全稳定性和几乎周期积分的存在性”Vietnam J.Math.. 30. 425-435 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Ushijima, F.Chiba: "A fundamental solution method for the reduced wave problem in a domain exterior to a disc"J.Computational and Appl.Math.. 152. 545-557 (2003)
T.Ushijima、F.Chiba:“盘外部域中减少波问题的基本解决方法”J.Computational and Appl.Math.. 152. 545-557 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
千葉文浩, 牛島照夫: "円外帰着波動問題の基本解近似解法における誤差の指数的減少"2003年度応用数学合同研究集会報告集. 193-196 (2003)
Fumihiro Chiba、Teruo Ushijima:“外圈递归波问题基本解近似方法中误差的指数减少”2003年应用数学联合研究会议论文集193-196(2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAITO Toshiki其他文献

NAITO Toshiki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAITO Toshiki', 18)}}的其他基金

Research on difference methods, positive property and related problems of functional equations
函数方程的差分法、正性及相关问题研究
  • 批准号:
    19540168
  • 财政年份:
    2007
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments of functional differential equations combined with difference equations, and studies of related topics
与差分方程相结合的泛函微分方程的新进展及相关课题的研究
  • 批准号:
    16540141
  • 财政年份:
    2004
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic Analysis and Numerical Analysis on Functional Defferential Equations and Partial Differential Equations
泛函微分方程和偏微分方程的调和分析和数值分析
  • 批准号:
    11640155
  • 财政年份:
    1999
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental Research and Applied Numerical Analysis in Partial Differential Equations and Functional Partial Differential Equations
偏微分方程和泛函偏微分方程的基础研究和应用数值分析
  • 批准号:
    09640163
  • 财政年份:
    1997
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

非线性微分差分方程的可积性和动力学行为
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非线性复差分方程的分类及其亚纯解的增长性、值分布和唯一性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
拟插值格式构造及其在非线性偏微分方程数值计算中的应用研究
  • 批准号:
    11801056
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
三类非线性偏微分方程的高精度差分方法及其理论研究
  • 批准号:
    11701229
  • 批准年份:
    2017
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
线性与非线性复微-差分方程和复微-差分多项式的若干性质
  • 批准号:
    11761035
  • 批准年份:
    2017
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Applications of Exterior Products to the Stability of Linear Systems of Difference Equations
外积在线性差分方程组稳定性中的应用
  • 批准号:
    527864-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    University Undergraduate Student Research Awards
Irreducibility and hypertranscendence of non-linear difference equations
非线性差分方程的不可约性和超超越性
  • 批准号:
    24840005
  • 财政年份:
    2012
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Closed Form Solutions for Linear Differential and Difference Equations
线性微分方程和差分方程的闭式解
  • 批准号:
    0728853
  • 财政年份:
    2007
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Continuing Grant
Research on comparisons of Global Properties of solutions of Non-linear Difference Equations and solutions of Nonlinear Phenomena.
非线性差分方程解与非线性现象解的全局性质比较研究。
  • 批准号:
    15540217
  • 财政年份:
    2003
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigations on Linear and Nonlinear Mathematical Analysis with Applications
线性和非线性数学分析及其应用研究
  • 批准号:
    60540088
  • 财政年份:
    1985
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了