Fundamental Research and Applied Numerical Analysis in Partial Differential Equations and Functional Partial Differential Equations

偏微分方程和泛函偏微分方程的基础研究和应用数值分析

基本信息

  • 批准号:
    09640163
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

1. The property of Semi-Fredholm operators are effectively applied to the existence of periodic solutions of linear, nonhomogeneous functional differential equations described by the noncompact operators. A formula of generators is found for the solution semigroups of evolution equations with infinite delay on the general phase space. It is applied to the study of the spectrum, eigenfunctions of the semigroup, as well as to the study of stability.2. The flow satisfying Kutta condition can be computed numerically as precisely as possible through a finite element computation of stream function of the velocity field using the transpearent non local boundary conditions imposed on artificial boundaries suitably introduced.3. The vibration and wave propagation phenomena are studied for the following themes : Proposal of perturbation method for structural-acoustic coupled vibration problem and its justification : Proposal of the iteration method for the Helmholtz equation based on the domain decomposition technique and proof of its efficiency : Consideration of the relation between inf-sup condition and spectral pollution. The equation is derived for the vibration of a elastic string in. 3-dimensional, and its certain justification is shown.4. A convergent finite element scheme for advection equations of convection equations or convection equations is proposed. The error order estimates which is best possible is proved. The scheme is successfully applied to an advection equation for the densities in the density dependent Stokes equations.5. Existence and regularity for a solution of the evolution problem associated to p-harmonic maps is established if the target manifold has a non-positive sectional curvature.
1。半芬霍尔姆运算符的性质有效地应用于非稳定运算符所描述的线性,非均匀功能微分方程的周期性解决方案。对于一般相空间上无限延迟的进化方程的溶液半群,发现了发电机公式。它适用于对半群的光谱,特征函数以及稳定性研究的研究。2。满足kutta条件的流量可以通过使用适当引入人造边界的跨性别非局部边界条件来精确地计算数值来精确地计算速度场的流函数的有限元计算。3。 The vibration and wave propagation phenomena are studied for the following themes : Proposal of perturbation method for structural-acoustic coupled vibration problem and its justification : Proposal of the iteration method for the Helmholtz equation based on the domain decomposition technique and proof of its efficiency : Consideration of the relation between inf-sup condition and spectral pollution.该方程是为3维弹性字符串的振动得出的,并显示其一定的理由。4。提出了用于对流方程或对流方程的对流方程的收敛有限元方案。错误顺序估算最好的估算已证明。该方案成功应用于密度依赖性Stokes方程中密度的对流方程5。如果目标歧管具有非阳性的截面曲率,则建立了与P谐波图相关的进化问题解决方案的存在和规律性。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
海津聰、今井正城、佃良生: "密度差を考慮した非圧縮粘性流れの数値シミュレーションとその解析" 応用力学連合会プロシーデイング. 47. 1235-1238 (1998)
Satoshi Kaizu、Masashiro Imai、Yoshio Tsukuda:“考虑密度差异的不可压缩粘性流的数值模拟和分析”日本应用力学联合会论文集 47. 1235-1238 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
海津聰、今井正城、佃良生: "非均質Stokes問題と有限要素法スキーム" 数値流体力学シンポジュウム. 11. 553-554 (1997)
Satoshi Kaizu、Masashiro Imai、Yoshio Tsukuda:“非齐次斯托克斯问题和有限元方法方案”计算流体动力学研讨会 11. 553-554 (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Satoshi KAIZU, Masaki IMAI and Yoshio TSUKUDA: "Non-homogeneous Stokes problems and their finite element shemes" The proceeding of the 11th numerical fluid dynamics. 553-554 (1997)
Satoshi KAIZU、Masaki IMAI 和 Yoshio TSUKUDA:“非齐次斯托克斯问题及其有限元模型”第 11 期数值流体动力学进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.S.Shin,T.Naito,and Nguyen V.M.: "On stability of solutions in linear autonomous functional differential equations" 数理解析研究所講究録. 1083. (1999)
J.S.Shin、T.Naito 和 Nguyen V.M.:​​“线性自治泛函微分方程解的稳定性”数学科学研究所 Kokyuroku 1083。(1999 年)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
劉 小進、 加古 孝: "領域分割法を用いたヘルムホルツ方程式に対する反復解法" 日本応用数理学会論文誌. 8. 435-446 (1998)
刘晓金,加子隆:“使用域分解法的亥姆霍兹方程的迭代求解方法”日本应用数学学会会刊 8. 435-446 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAITO Toshiki其他文献

NAITO Toshiki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAITO Toshiki', 18)}}的其他基金

Research on difference methods, positive property and related problems of functional equations
函数方程的差分法、正性及相关问题研究
  • 批准号:
    19540168
  • 财政年份:
    2007
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments of functional differential equations combined with difference equations, and studies of related topics
与差分方程相结合的泛函微分方程的新进展及相关课题的研究
  • 批准号:
    16540141
  • 财政年份:
    2004
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Global Properties and Correlation of Solutions to Functioanl Equations and Difference Equations
函数方程和差分方程解的全局性质及相关性研究
  • 批准号:
    14540158
  • 财政年份:
    2002
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic Analysis and Numerical Analysis on Functional Defferential Equations and Partial Differential Equations
泛函微分方程和偏微分方程的调和分析和数值分析
  • 批准号:
    11640155
  • 财政年份:
    1999
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了