Mathematical Model Analysis for the Stability Change of Ecosystem by Elimination of Interspecific Relationship

消除种间关系引起生态系统稳定性变化的数学模型分析

基本信息

  • 批准号:
    14540120
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

1. As for Lotka-Volterra competing two species system with temporally intermittent competitive relationship, the temporally intermittent competition could realize the coexistence or emphasize the competition as a result. We introduce in addition the spatial distribution of those two species, making a mathematical model with reaction-diffusion system, and discuss the expansion or the shrinking of spatial distribution as a travelling wave problem. Until now we find that the temporally intermittent competition could cause the coexistence of two species at the same site, with their spatially overlapping distributions. Mathematically the conditions for such co-location coexistence would be closely related to the condition for coexistence in case of population dynamics without taking account of spatial distribution. Moreover, in case of spatial co-location coexistence, each spatial distribution invades into the habitat of another species. Numerical calculations indicate that the front of suc … More h spatial invasion can be treated as a stationary travelling wave with a constant speed2. As for Lotka-Volterra predator-prey system, we investigate the possibility of coexistence of preys with competition which mediates the apparent competition by a common predator. We can show that, even when a prey tends to go extinct due to predation by a predator that feeds another preys, the prey could survive if it has an appropriate competitive relationship with another prey(s), with or without predators extinction. This implies that, with an elimination of competitive relationship between preys within a food web, some preys could go extinct due to such indirect effect. Consequently it is indicated that the competitive relationship could promote the coexistence between those competing species. Therefore, the competitive relationship within a stable ecosystem may stabilize the system. On the other hand, the invasion of new species may considerably destabilize the system, depending on the possible predation for the invading species Less
1.对于具有时间间歇性竞争关系​​的Lotka-Volterra竞争两个物种系统,时间间歇性竞争可以实现共存或强调竞争,我们另外引入了这两个物种的空间分布,并建立了数学模型。反应扩散系统,并将空间分布的扩张或收缩作为行波问题进行讨论。到目前为止,我们发现时间间歇性竞争可能导致两个物种在同一地点共存。从数学上讲,这种共存共存的条件将与人口动态情况下的共存条件密切相关,而无需考虑空间分布。此外,在空间共存共存的情况下,每个空间分布都会侵入。数值计算表明,这种入侵的前部空间可以被视为具有恒定速度的静止行波2。在这个系统中,我们研究了猎物与竞争共存的可能性,这种竞争调解了共同捕食者的明显竞争。我们可以证明,即使当一个猎物由于捕食另一个猎物的捕食而趋于灭绝时,猎物也可以生存。如果它与其他猎物有适当的竞争关系,无论捕食者是否灭绝,这意味着,随着食物网内猎物之间竞争关系的消除,一些猎物可能会由于这种间接影响而灭绝。表明的竞争关系可以促进这些竞争物种之间的共存,因此,稳定的生态系统内的竞争关系可以稳定系统,另一方面,新物种的入侵可能会大大破坏系统的稳定,这取决于对生态系统可能的捕食。入侵物种 较少

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SENO Hiromi其他文献

SENO Hiromi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SENO Hiromi', 18)}}的其他基金

Mathematical consideration of new modeling for biological population dynamics
生物种群动态新模型的数学考虑
  • 批准号:
    24540129
  • 财政年份:
    2012
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On Mathematical Structure of Time-Discrete Model for Epidemic Population Dynamics
流行病人口动态时间离散模型的数学结构探讨
  • 批准号:
    21540130
  • 财政年份:
    2009
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the mathematically rational structure of the time-discrete model for biological population dynamics
论生物种群动态时间离散模型的数学合理结构
  • 批准号:
    19540132
  • 财政年份:
    2007
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Modelling Analysis for Population Dynamics with Temporally Intermittent Specific Interaction
具有时间间歇特定相互作用的种群动态数学模型分析
  • 批准号:
    12640126
  • 财政年份:
    2000
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

基于古湖沼学的鄱阳湖赣江三角洲湿地生态系统演变过程研究
  • 批准号:
    51879128
  • 批准年份:
    2018
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
武陵山区水生生态系统建模与动力学研究
  • 批准号:
    11561022
  • 批准年份:
    2015
  • 资助金额:
    35.0 万元
  • 项目类别:
    地区科学基金项目
森林演替对土壤有机碳和溶解有机碳动态变化的影响机理
  • 批准号:
    41461106
  • 批准年份:
    2014
  • 资助金额:
    52.0 万元
  • 项目类别:
    地区科学基金项目
广西濒危动物白头叶猴保护的数学模型研究
  • 批准号:
    11361068
  • 批准年份:
    2013
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
基于农田生态系统碳氮平衡的环境成本评估模型研究
  • 批准号:
    30270220
  • 批准年份:
    2002
  • 资助金额:
    18.0 万元
  • 项目类别:
    面上项目

相似海外基金

Transovarial transmission of yersinia pestis in fleas
跳蚤中鼠疫耶尔森氏菌的跨卵巢传播
  • 批准号:
    10727534
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
Core 2: Ecological Core
核心2:生态核心
  • 批准号:
    10730409
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
The Delta Ecology of NSCLC Treatment
NSCLC 治疗的 Delta 生态学
  • 批准号:
    10730403
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
Crossing scales to predict and prevent bat virus zoonoses in a Madagascar ecosystem
跨尺度预测和预防马达加斯加生态系统中的蝙蝠病毒人畜共患病
  • 批准号:
    10509070
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
Crossing scales to predict and prevent bat virus zoonoses in a Madagascar ecosystem
跨尺度预测和预防马达加斯加生态系统中的蝙蝠病毒人畜共患病
  • 批准号:
    10697346
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了