On the Constructions of Optical Orthogonal Codes from Combinatorial Design Theory
从组合设计理论探讨光学正交码的构造
基本信息
- 批准号:14540100
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optical orthogonal codes are used in optical code-division multi-access communications so that multiple users can efficiently transmit and receive information in one single optic channel. It is known that an optimal optical orthogonal code is equivalent to a combinatorial structure called maximal cyclic t-difference packing. The main purpose of this research project is to construct optimal optical orthogonal codes from a combinatorial approach, that is, instead of constructing optimal optical orthogonal codes directly, we construct their corresponding maximal cyclic t-difference packings.Fuji-Hara, Miao and Mishima introduced a new concept of incomplete cyclic difference matrices, and used them to construct many cyclic t-difference packings with maximal number of blocks. Together with a computer search, many infinite families of optimal optical orthogonal codes were constructed. The existence of optimal optical orthogonal codes with weight 4, correlation constraint 1, and code length v … More with v=0 mod 24 was completely settled.Shinohara used special arcs and conies in finite geometries to construct optical orthogonal codes and obtained infinite families of asymptotic optimal optical orthogonal codes.Frequency hopping sequences are used in multi-access spread-spectrum communications which are closely related to optical orthogonal codes. Fuji-Hara, Miao and Mishima found an equivalence relationship between frequency hopping sequences and partition-type difference packings. By using this equivalence, Fuji-Hara, Miao and Mishima constructed many infinite families of optimal frequency hopping sequences.Miao also considered the security of multi-access communication systems. Topics covered include authentication codes, secret sharing schemes, ID-based signature schemes, and proxy cryptosystems.Fuji-Hara, Miao, Mishima and Shinohara also carried out theoretical research on several topics in combinatorial design theory which are related to optical orthogonal codes and frequency hopping sequences. Less
光学代码多访问通信中使用光学正交代码,因此多个用户可以在一个单个光学通道中有效传输和接收信息。众所周知,最佳的光学正交代码等效于一种称为最大循环T差填料的组合结构。 The main purpose of this research project is to construct optimal optical orthogonal codes from a combinatorial approach, that is, instead of constructing optimal orthogonal codes directly, we construct their corresponding maximal cyclic t-difference packings.Fuji-Hara, Miao and Mishima introduced a new concept of incomplete cyclic difference materies, and used them to construct many cyclic t-difference packings with maximum number of blocks.Together with a computer search, many infinite families of optimal optical orthogonal codes were constructed.The existence of optimal optical orthogonal codes with weight 4, correlation constraint 1, and code length v … More with v=0 mod 24 was completely settled.Shinohara used special arcs and conies in finite geometries to construct optical orthogonal codes and obtained infinite families of asymmetric optimal光学正交代码。通过与光学正交代码密切相关的多访问传播频率序列。Fuji-Hara,Miao和Mishima发现了频率跳跃序列与分区类型差异包装之间的等效关系。通过使用这种等效性,富士,米奥和米希马(Miao)和米希马(Mishima)构建了许多最佳频率跳跃序列的无限家族。涵盖的主题包括身份验证代码,秘密共享方案,基于ID的签名方案以及代理密码系统。Fuji-Hara,Miao,Mishima,Mishima和Shinohara还对组合设计理论中的几个主题进行了理论研究,这些研究与光学的正交代码和频率希望序列相关。较少的
项目成果
期刊论文数量(84)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
General Constructions for Double Group Divisible Designs and Double Frames
- DOI:10.1023/a:1016561426839
- 发表时间:2002-06
- 期刊:
- 影响因子:0
- 作者:Yanxun Chang;Y. Miao
- 通讯作者:Yanxun Chang;Y. Miao
Y.Chang, Y.Miao: "General constructions for double group divisible designs and double frames"Designs, Codes and Cryptography. 26. 155-168 (2002)
Y.Chang,Y.Miao:“双群可分设计和双框架的一般结构”设计、代码和密码学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A note on geometrical structures of linear ordered orthogonal arrays and (t,m,s)-nets of low strength
关于线性有序正交阵和低强度(t,m,s)网几何结构的注记
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:R.Fuji-Hara;Y.Miao
- 通讯作者:Y.Miao
Cyclic Mendelsohn triple systems with a cyclic resolution or a cyclic almost resolution.
具有循环分辨率或循环近似分辨率的循环门德尔松三元组。
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:H.-L.Fu;M.Nishima;M.Nishima
- 通讯作者:M.Nishima
S.Furino, S.Kageyama, A.C.H.Ling, Y.Miao, J.Yin: "Frames with block size four and index three"Journal of Statistical Planning and Inference. 106. 117-124 (2002)
S.Furino、S.Kageyama、A.C.H.Ling、Y.Miao、J.Yin:“具有块大小四和索引三的框架”统计规划与推断杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIAO Ying其他文献
MIAO Ying的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIAO Ying', 18)}}的其他基金
Combinatorial multimedia fingerprinting codes and their corresponding colluder-tracing algorithms
组合多媒体指纹编码及其相应的共谋追踪算法
- 批准号:
24540111 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On Perfect Difference Families and their Applications to Radar Arrays
完全差分族及其在雷达阵列中的应用
- 批准号:
21540108 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the Constructions of Frequency Hopping Sequences from Combinatorial Design Theory
从组合设计理论探讨跳频序列的构造
- 批准号:
18540109 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Illumination Optical Communication and Power Line Communication integrated Non-orthogonal Code Multi-level Modulation Network
照明光通信与电力线通信一体化非正交码多级调制网络
- 批准号:
22K19770 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Constructions of multilength, variable weight optical orthogonal codes
多长度、可变权重光学正交码的构造
- 批准号:
15K04982 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Constructions and existence of quantum error correcting codes and conflict-avoiding codes through the use of combinatorial designs
通过使用组合设计的量子纠错码和冲突避免码的构造和存在
- 批准号:
19500236 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research and Development of OCDM system using 128 chip orthogonal sequence SSFBG Encoder/decoder
采用128码片正交序列SSFBG编码器/解码器的OCDM系统的研发
- 批准号:
16360188 - 财政年份:2004
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optical Orthogonal Codeの構成とブロック計画の応用
光正交码配置及块规划应用
- 批准号:
13740081 - 财政年份:2001
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)