Study on Geometry and Analysis of Conformal Manifolds and Bubbling Trees
共形流形和冒泡树的几何与分析研究
基本信息
- 批准号:14540072
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied the following:1.Study of cylindrical and orbifold Yamabe invariantsAs a generalization of the Yamabe constant/invariant of closed manifolds, we defined appropriately the orbifold Yamabe constant/invariant in terms of the cylindrical Yamabe constant/invariant.For a cylindrical 4-manifold with positive cylindrical Yamabe invariant, we also established a method for estimating its cylindrical Yamabe invariant from above, by means of the Atiyah-Patodi-Singer L^2-index theory. Moreover, we generalized the Kobayashi inequality for Yamabe invariants to cylindrical Yamabe invariants, and studied its applications.2.Study on the mass of compact conformal manifoldsThe mass is a geometric invariant for asymptotically flat manifolds. For a compact conformal manifold (M, C) with positive Yamabe invariant, a scalar-flat, asymptotically flat manifold (M-{p},g_<AF>) is defined naturally from each initial metric g in C, where [g_<AF>]=C. Then the mass m(g ; p) is non-negative. This mass m … More (g ; p) also depends on the choice of g and p. However, if we use the Habermann-Jost's canonical metric g_<HJ> as a initial metric, then the mass m(g_<HJ>;p) is now independent of the choice of p. By using this fact, we can define the mass mass(M ; C) of the conformal manifold (M, C) as a conformal invariant. Moreover, taking the infimum of it over all conformal classes, we can also define the mass invariant mass(M) as a differential-topological invariant of M. We studied on the Kobayashi-type inequality of the mass invariant for connected manifolds.3.Yamabe invariants of 3-manifoldsThe method of inverse mean curvature flow is the central technique for the resolution of the Riemannian Penrose Conjecture in Cosmology. By using this technique, Bray-Neves determined the value of the Yamabe invariant of RP^3. This result is the first affirmative answer to the Schoen's Conjecture for the Yamabe invariant of 3-manifolds with constant curvature. We also determined the Yamabe invariant of the connected manifold RP^3 # k(S^2 x S^1), by means of the inverse mean curvature flow technique. This is also one of the open problems proposed by Bray-Neves.For the above study, the support by the 'Grant-in-Aid for Sci. Res. (C)(2),14540072' was very important. Less
We have studied the following:1.Study of cylindrical and orbifold Yamabe invariantsAs a generalization of the Yamabe constant/invariant of closed manifolds, we defined appropriately the orbifold Yamabe constant/invariant in terms of the cylindrical Yamabe constant/invariant.For a cylindrical 4-manifold with positive cylindrical Yamabe invariant, we还建立了一种通过atiyah-patodi-singer l^2 index理论来估计其Yamabe不变的方法。此外,我们将Yamabe不变性的Kobayashi不平等概括为Yamabe不变性的,并研究了其应用。2。在紧凑的结构歧管质量上进行研究,质量是非对称平面歧管的几何不变。对于具有阳性不变的正的紧凑共形歧管(m,c),标量液量,不对称的扁平歧管(m- {p},g_ <af>)是自然定义的。那么质量m(g; p)是非负的。这个质量m…更多(g; p)也取决于g和p的选择。但是,如果我们将Habermann-Jost的规范度量G_ <HJ>用作初始度量,则质量M(G_ <HJ>; P)现在独立于p的选择。通过使用这个事实,我们可以将保形歧管(M,C)的质量(M; C)定义为保形不变。此外,将其限制在所有子同类阶级上,我们还可以将质量不变的质量(M)定义为M的差异性。在宇宙学中。通过使用此技术,Bray-neves确定了Rp^3的Yamabe不变的值。该结果是对Schoen对3个manifolds的Yamabe不变的稳定质量不变的猜想的第一个肯定答案。我们还通过逆平均曲率流动技术确定了连接的歧管RP^3#K(S^2 x s^1)的Yamabe不变性。对于上述研究,这也是Bray-neves提出的开放问题之一。 res。 (c)(2),14540072'非常重要。较少的
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atsushi Kasue, Hironori Kumura: "Spectral convergence of conformally immersed surfaces with bounded mean curvature"J.Geom.Anal.. 12. 663-681 (2002)
Atsushi Kasue、Hironori Kumura:“具有有界平均曲率的共形浸没表面的光谱收敛”J.Geom.Anal.. 12. 663-681 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroki Sato, Changjun Li, Makito Oichi: "Jorgensen groups of parabolic type II, uncountably infinite case"Osaka J.Math.. (印刷中). (2004)
Hiroki Sato、Changjun Li、Makito Oichi:“抛物线型 II 的 Jorgensen 群,不可数无限情况”Osaka J.Math..(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuo Akutagawa, Boris Botvinnik: "Yamabe metrics on cylindrical manifolds"Geom.Funct.Anal.. 13. 259-333 (2003)
Kazuo Akutakawa、Boris Botvinnik:“圆柱流形上的 Yamabe 度量”Geom.Funct.Anal.. 13. 259-333 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yusuke Okuyama: "Remarks on several theorems related to finiteness and linealization problem on entire functions"RIMS kokyuroku, Kyoto Univ.. 1269. 42-47 (2002)
奥山佑介:“关于整个函数上的有限性和线性化问题的几个定理的评论”RIMS kokyuroku,京都大学. 1269. 42-47 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroki Sato, Changiun Li, Makito Oichi: "Jorgensen groups of parabolic type II, uncountably infinite case"Osaka J. Math.. (to appear). (2004)
Hiroki Sato、Changiun Li、Makito Oichi:“抛物线型 II 的 Jorgensen 群,不可数无限的情况”Osaka J. Math..(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AKUTAGAWA Kazuo其他文献
AKUTAGAWA Kazuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AKUTAGAWA Kazuo', 18)}}的其他基金
Geometric analysis for ideal boundaries of product manifolds, and the study of harmonic maps and Einstein metrics
乘积流形理想边界的几何分析,以及调和映射和爱因斯坦度量的研究
- 批准号:
24654009 - 财政年份:2012
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Conformal Geometry, and Geometry of Einstein Metrics and Exotic Differentiable Structures
共形几何、爱因斯坦度量几何和奇异可微结构
- 批准号:
21540097 - 财政年份:2009
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Conformal Geometry from the Viewpoint of Topology and Analysis
从拓扑与分析的角度研究共形几何
- 批准号:
18540098 - 财政年份:2007
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Conformal Geometry and Group C^*-bundle from the Viewpoint of Global Analysis
全局分析视角下的共形几何与C^*-丛研究
- 批准号:
16540059 - 财政年份:2004
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spin^c Analysis for Group C^*-bundles on Manifolds and Study of Yamabe Invariants
流形上C^*-丛的自旋^c分析及Yamabe不变量的研究
- 批准号:
11640070 - 财政年份:1999
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Global Analysis for Geometric Structures and Topological Invariants
几何结构和拓扑不变量的全局分析
- 批准号:
09640102 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
几何分析中的若干不等式与刚性现象
- 批准号:11601467
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Einstein metrics and Ricci flow on singular spaces, and study of the Yamabe invariant
奇异空间上的爱因斯坦度量和利玛窦流以及山边不变量的研究
- 批准号:
18H01117 - 财政年份:2018
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of Conformal Geometry and Group C^*-bundle from the Viewpoint of Global Analysis
全局分析视角下的共形几何与C^*-丛研究
- 批准号:
16540059 - 财政年份:2004
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spin^c Analysis for Group C^*-bundles on Manifolds and Study of Yamabe Invariants
流形上C^*-丛的自旋^c分析及Yamabe不变量的研究
- 批准号:
11640070 - 财政年份:1999
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Global Analysis for Geometric Structures and Topological Invariants
几何结构和拓扑不变量的全局分析
- 批准号:
09640102 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)