On the compactification of Witt group schemes and the deformation of Art theory
论维特群方案的紧化与艺术理论的变形
基本信息
- 批准号:11640045
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Already we have showed the existence of group schemes which gave the deformations of the group schemes of Witt vectors to tori. Using those group schemes we could contract the unified Kummer-Artin-Schreier-Witt theory. But, when we want to apply the theory to some problems, for example, the lifting problem of cyclic coverings of algebraic curves, partially solved by Green-Matignon, we need more explict description of the group schemes. In 1999 and 2000, we devoted ourselves to construct concretely the group schemes giving the deformations of the group schemes of Witt vectors to tori, and we succeeded to descrive such group schemes by using several Witt vectors. In the background, there is the Cartier thory, and our thory is given by the representation of that by virtue of deformed Artin-Hasse exponential series.To descrive the ramifications of cyclic coverings, we need to compactfy such group schemes. In positive characteristic case. Garuti gave a nice compactifications of group schemes of Witt vectors by means of ruled surfaces. We tried to give compactifications of the deformed group schemes also, even it is in two-dimensional case, and we are on the way to investigate the description of ramification locuses geometrically.
我们已经展示了群体方案的存在,这些方案将Witt Vectors的组方案的变形与Tori的变形。使用这些小组计划,我们可以签订统一的Kummer-Artin-Schreier-Witt理论。但是,当我们想将理论应用到一些问题上时,例如,绿色 - 马蒂尼翁(Green-Matignon)部分解决了代数曲线的循环覆盖物的提升问题,我们需要对组方案的更多解释描述。在1999年和2000年,我们致力于构建群体方案,将Witt Vectors的小组方案变形为Tori,我们成功地通过使用多个Witt Vectors来描述此类群体方案。在背景中,有卡地亚(Cartier)thory,而我们的thory是通过变形的artin-hasse指数序列来给出的。在积极的特征情况下。 Garuti通过统治的表面很好地完成了Witt矢量的小组计划。我们也试图给出变形组方案的压缩,即使在二维情况下,我们也在几何上研究Ramifience Locuses的描述。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T. Sekiguchi & N. Suwa: "A note on extensions of algebraic and formal groups V"(Preprint). (2001)
T·关口
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Sekiguchi & N. Suwa: "On the unified Kummer-Artin-Schreier- Witt theory"Mathematiques Pures de Bordeaux C.N.R.S., Prepublication. n^0 111. 1-90 (1999)
T·关口
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tsutomu Sekiguchi: "A note on extensions of algebraie and formal groups, V"Preprint. 1-58 (2001)
Tsutomu Sekiguchi:“关于代数和形式群的扩展的注释,V”预印本。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tsutomu Sekiguchi: "On the unified Kummer-Artin-Schreier-Witt theory"Mathematiques Pures de Bordeaux C.N.R.S., Prepublication. 111. 1-90 (1999)
Tsutomu Sekiguchi:“论统一的 Kummer-Artin-Schreier-Witt 理论”Mathematiques Pures de Bordeaux C.N.R.S.,预出版。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
関口 力: "Jacobi多様体のSerre-Tate cavonical liftingについて"「暗号理論とそれを支える代数曲線」第2回ワークショップ報告集. 2. 5-12 (2001)
Riki Sekiguchi:“关于雅可比流形的 Serre-Tate 空洞提升”第二届密码学理论和支持它的代数曲线研讨会的报告 2. 5-12 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEKIGUCHI Tsutomu其他文献
SEKIGUCHI Tsutomu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEKIGUCHI Tsutomu', 18)}}的其他基金
On the lifting problem of cyclic coverings of non-singular curvesin characteristic P to them in characteristic 0.
关于特征P中的非奇异曲线到特征0中的循环覆盖的提升问题。
- 批准号:
19540051 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Historical Records of Ninna-ji Temple and Monzeki of Omuro
仁和寺与大室门迹史料研究
- 批准号:
12610362 - 财政年份:2000
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Kummer-Artin-Schreier-Witt theory and the deformations of the Art theory
Kummer-Artin-Schreier-Witt 理论和艺术理论的变形
- 批准号:
08640059 - 财政年份:1996
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of the Social Goundition of the Insei Period
永政时代的社会基础研究
- 批准号:
07610358 - 财政年份:1995
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deformation theory of group schemes and Construction of extensions
群方案的变形理论与扩展的构造
- 批准号:
05640063 - 财政年份:1993
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
On the deformations of cyclic Galois coverings of algebraic curves
关于代数曲线循环伽罗瓦覆盖的变形
- 批准号:
02640075 - 财政年份:1990
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Conscience of Aristocratic Decendant in Heian period -through the study of Kokiroku-
平安时代贵族后裔的良知——通过《古纪六》的研究——
- 批准号:
02610165 - 财政年份:1990
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
On the deformations of cyclic Galoi coverings of algebraic curves
关于代数曲线循环伽罗伊覆盖的变形
- 批准号:
62540066 - 财政年份:1987
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
New developments in number theory from the Kummer theory of algebraic tori
从代数环面库默尔理论看数论的新进展
- 批准号:
19540015 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of arithmetic theory of algebraic groups to computational number theory
代数群算术理论在计算数论中的应用
- 批准号:
16540014 - 财政年份:2004
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Around Kummer-Artin-Screier-Witt theories
围绕 Kummer-Artin-Screier-Witt 理论
- 批准号:
16540040 - 财政年份:2004
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of the Kummer-Artin-Schreier-Witt theory to Number Theory and to Algebraic Geometry
Kummer-Artin-Schreier-Witt 理论在数论和代数几何中的应用
- 批准号:
12640041 - 财政年份:2000
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)