Mean values and Asymptotic Behavior on Arithmetical Functions
算术函数的平均值和渐近行为
基本信息
- 批准号:10640029
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This investigations are on the mean value theorems of Riemann's zeta-function, and an exponential sum involving the generalized divisor function. We study it by using the methods of Jutila, the approximate functional equation of Motohashi, the Atkinson formula of Matsumoto-Meurman and the Riemann-Siegel formula, introduced by M. Jutila, M. Motohashi, K. Matsumoto and T. Meurman in their consideration for the theory of zeta-function. Particular we study mean square of the remainder term for their summatory functions. The main subjects treated here are the following five : (1)the divisor problem for short intervals, (2)the Matsumoto-Meurman formula for short intervals, (3)mean square for the non-symmetric form of the approximate functional equation of Motohashi, (4)mean square for the non-symmetric form of the approximate functional equation of Motohashi for short intervals, (5)mean square for the Riemann-Siegel formula. For each subject, we have obtained the following results and forekn … More owledges :(1), (2)The mean square of the remainder term for summatory of the divisor function for short intervals was first by M. Jutila, who obtained the asymptotic formula involving the integral for short intervals. The result of this note is the mean value formula of the remainder term for an exponential sum involving the generalized divisor functions for short intervals. This result is an analoge of Jutila's result. Similarly, by using Jutila methods, we are derived to the mean value theorem of the remainder term for the mean value formula of the Riemann zeta-function in the critical strip.(3), (4)A very estimation for remainder term of the approximate functional equation for the square of Riemann zeta-function was first obtained by Hardy-Littlewood in 1929, but Motohashi improved it to an analogue of the Riemann-Siegel formula for the square of the Riemann zeta-function in 1983. The results of this note are derived to the mean value formula for remainder term, and the mean value theorem of this remainder term for short intervals.(5)As application of the Riemann-Siegel formula, we have the even power moments for the remainder term of this formula. Less
这项研究是关于里曼Zeta功能的意义价值理论,以及涉及广义分裂函数的指数总和。我们使用Jutila的方法,Motohashi的近似功能方程,Matsumoto-Meurman的Atkinson公式和Riemann-Siegel Formula,由M. Jutila,M。Motohashi,M。Motohashi,K。Matsumoto和T. Meurman介绍了Zeta-funuttion的考虑。特别是我们研究其余术语的均值平方。此处处理的主要受试者是以下五个:(1)短间隔的除数问题,(2)短间隔的均舒人 - 穆尔曼公式,(3)(3)Motohashi近似功能方程的非对称形式的均值平方平方平方,(4)(4)MotohaShi近似平方的均值平方的均值(4)Motohashi均值(5)的平方平方(5)(5) 公式。对于每个受试者,我们都获得了以下结果和前景…更多的猫头鹰:(1),(2)Jutila M. Jutila首先首先是剩余的分隔函数的余额,用于简短间隔,后者获得了涉及短间隔的积分的不对称公式。本说明的结果是涉及短时间间隔的广义分数函数的剩余项的平均值公式。这个结果是朱迪拉结果的类似物。 Similarly, by using Jutila methods, we are derived to the mean value theory of the remainder term for the mean value formula of the Riemann zeta-function in the critical strip.(3), (4)A very estimation for remainder term of the approximate functional equation for the square of Riemann zeta-function was first obtained by Hardy-Littlewood in 1929, but Motohashi improved it to an analogue of the Riemann-siegel公式为1983年Riemann Zeta功能的平方。该注释的结果得出余量术语的平均值公式,以及该余下项的平均值理论。(5)作为Riemann-Siegel公式的应用,我们具有该剩余公式的均匀力量。较少的
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isao Kiuchi and Yoshio Tanigawa: "The mean value theorem of the divisor problem for short intervals" Archiv der Math. 71. 445-453 (1998)
Isao Kiuchi 和 Yoshio Tanikawa:“短区间除数问题的中值定理”Archiv der Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
KIKUCHI, I: "On the mean value formula for the non-symmetric form of the approximate functional equation of ζィイD12ィエD1 (s) in the critical strip"Publicationes Mathematicae Debrecen,. (to appear). (2000)
KIKUCHI, I:“关于临界带中 D12D1 (s) 近似函数方程的非对称形式的平均值公式”,Publicationes Mathematicae Debrecen,(2000 年出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I.Kiuchi and Y.Tanigawa: "A mean value theorem of the approximate functional eguation of S^2(s)for thort intervals"Journal of Ramanujan Mathmatical Society. (印刷中). (2000)
I.Kiuchi 和 Y.Tanikawa:“Thhor 区间的 S^2(s) 近似函数估计的均值定理”拉马努金数学学会杂志(2000 年出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
KIKUCHI, I and YANAGISAWA, N.: "On the mean value formulas for the approximate functional equation of the Riemann zeta-function"RIMS. 1091. 251-255 (1999)
KIKUCHI, I 和 YANAGISAWA, N.:“关于黎曼 zeta 函数的近似函数方程的平均值公式”RIMS。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
KIKUCHI, I and TANIGAWA, Y: "The mean value theorem of the divisor problem for short intervals"Archiv der Math,. 71. 445-453 (1998)
KIKUCHI, I 和 TANIGAWA, Y:“短区间除数问题的中值定理”Archiv der Math,。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KIUCHI Isao其他文献
KIUCHI Isao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A study on the relationship between the global property of immersed surfaces in space forms and the behavior of their Gauss maps
空间形式浸没表面的全局特性与其高斯图行为之间的关系研究
- 批准号:
24740044 - 财政年份:2012
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on a new divisor problem arisen from the derivatives of the Riemann zeta function
黎曼zeta函数导数引起的新除数问题研究
- 批准号:
23740009 - 财政年份:2011
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The riemann zeta function and divisor functions
黎曼 zeta 函数和除数函数
- 批准号:
384583-2009 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
University Undergraduate Student Research Awards
A study on global properties of immersed surfaces in space forms from the viewpoint of their Gauss maps
从高斯图的角度研究空间形式浸没表面的全局特性
- 批准号:
21740053 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Potential theoretical research for nonlinear partial differential equations
非线性偏微分方程的潜在理论研究
- 批准号:
20540196 - 财政年份:2008
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)