Differential Geometry and Information Geometry II
微分几何与信息几何II
基本信息
- 批准号:10440022
- 负责人:
- 金额:$ 4.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A pair (D, g) of an affine connection D and a Riemann metric g is said to be a Codazzi structure if g satisfies Codazzi equattion with respect to D. For a Codazzi structure (D, g) , D is flat if and only if (D, g) is a Hessian structure, that is, g is locally expressed by a Hessian with respect to affine coordinate systems for D. Hessian (Codazzi) structures are deeply connected with Kahler geometry and affine differential geometry, and play important, essential and central roles in information geometry. In this project we engaged in fundamental researches for Hessian (Codazzi) structures from both differential geometric and information geometric viewpoints, and obtained the following results.1 We relate the existence of invariant projectively flat affine connections to that of certain affine representation of Lie algebras. Using such affine representation we proved :(1) A homogeneous space G/K admits an invariant projectively flat affine connection if and only if G/K has an equivariant centro-affine hypersurface immersion.(2) There is a bijective correspondence between semi-simple symmetric spaces with invariant projectively flat affine connections and central-simple Jordan algebras.(3) A homogeneous space admits an invariant Codazzi structure of constant curvature c=0 if and only if it has an equvariant immersion of codimension 1 into a certain homogenous Hessian manifolds.2 For a linear mapping ρ of a domain Ω into the space of positive definite symmetric matrices we conatructed an exponential family of probability distributions parametrized by the elements in RィイD1nィエD1×Ω, and studied a Hessian structure on RィイD1nィエD1×Ω given by the exponential family. Using ρ we introduced a Hessian structure on a vector bundle over a compact hyperbolic affina manifold and proved a certain vanishing theorem.
如果G满足Codazzi方程,则据称是Codazzi方程。几何和仿射差异几何形状,并在信息几何形状中起重要,重要和中心作用。在这个项目中,我们从差异几何和信息几何观点上进行了针对Hessian(Codazzi)结构的基本研究,并获得了以下结果。1我们将不变的现象与Lie代数的某些仿射表示存在相关联。 Using such affine representation we provided :(1) A homogeneous space G/K admits an invariant projectively flat affine connection if and only if G/K has an equal centro-affine hypersurface immersion.(2) There is a bijective correspondence between semi-simple symmetric spaces with invariant projectively flat affine connections and central-simple Jordan algebras.(3) A homogeneous space admissions an invariant Codazzi structure of constant curvature c=0 if and only if it has an equal immersion of codimension 1 into a certain homogenous Hessian manifolds.2 For a linear mapping ρ of a domain Ω into the space of positively defined symmetric matrices we constructed an exponential family of probability distributions parametrically by the elements in Riy D1nie D1×Ω, and studiod a Hessian structure on Riy D1nie D1×ω由指数族给出。使用ρ我们在紧凑的双曲线歧管上的矢量束上引入了黑森结构,并证明了某些消失的定理。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NAKAUCHI, Nobumitsu: "A Liouville type theorem for p-harmonic maps"Osaka J. Math.. 35. 303-312 (1998)
中内信光:“p 调和映射的刘维尔型定理”Osaka J. Math.. 35. 303-312 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Shima: "Geometry associated with normal distributions" Osaka J.Math.(発表予定).
H.Shima:“与正态分布相关的几何”Osaka J.Math(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Shima: "Homogeneous spaces with invariant projectively flat attine connections" Trans.Amer.Math.Soc.(発表予定).
H.Shima:“具有不变投影平坦连接的齐次空间”Trans.Amer.Math.Soc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hirohiko Shima: "Homogeneous spaces with invariant projectively flat affine connections"Trans.American Math.Soc.. 351・12. 4713-4726 (1999)
Hirohiko Shima:“具有不变射影平面仿射连接的齐次空间”Trans.American Math.Soc. 351・12(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hirohiko Shima: "Homogeneous space with invariant projectively tlat affine connections"Trans.American Math.Soc.. 351・12. 4713-4726 (1999)
Hirohiko Shima:“具有不变投影平面仿射连接的齐次空间”Trans.American Math.Soc. 351・12(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIMA Hirohiko其他文献
SHIMA Hirohiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIMA Hirohiko', 18)}}的其他基金
Hessian Geometry and Information Geometry
海森几何与信息几何
- 批准号:
15540080 - 财政年份:2003
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DIFFERENTIAL GEOMETRY OF HESSIAN STRUCTURES AND ITS APPLICATIONS TO INFORMATION GEOMETRY
Hessian结构的微分几何及其在信息几何中的应用
- 批准号:
13640078 - 财政年份:2001
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Geometry of the space of all variations of mixed Hodge structure over complex manifolds
复流形上混合Hodge结构所有变体的空间几何
- 批准号:
19H01787 - 财政年份:2019
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Problems related to integrable geodesic flows
与可积测地流相关的问题
- 批准号:
18540087 - 财政年份:2006
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of almost Hermitian manifolds
几乎厄米流形的几何
- 批准号:
17540068 - 财政年份:2005
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of Kahler fibrations and its applications to Finsler geometry
卡勒纤维的研究及其在芬斯勒几何中的应用
- 批准号:
17540086 - 财政年份:2005
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Totally complex submanifolds of a quaternion projective space
四元数射影空间的全复子流形
- 批准号:
15540065 - 财政年份:2003
- 资助金额:
$ 4.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)