Problems related to integrable geodesic flows

与可积测地流相关的问题

基本信息

  • 批准号:
    18540087
  • 负责人:
  • 金额:
    $ 2.14万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

It is well known that the geodesic flow of ellipsoid is completely integrable. We studied in this research much finer properties of it. One of the results we obtained is the determination of the cut loci for any points; they are closed balls of codimension one for general points and those of codimension two for special points. The other result is the clarification of the structure of the first conjugate loci for general points. In particular, we showed that the set of singularities of conjugate locus of a general point consists of three connected component and each component (an open and dense part) is a cuspidal edge. This is a higher dimensional version of the so-called Jacobi's last geometric statement: "The conjugate locus of any non-umbilic point on two-dimensional ellipsoid has exactly four cusps". The main ingradient in the proofs of those results is the detailed investigation of Jacobi fields and their zeros. Moreover, we showed that the above results equally hold for some Liouville manifolds.Also, we investigated local structures of Hermite-Liouville manifolds and clarified them completely, even when they do not have the action of infinitesimal automor-phisms as for the case of Kahler-Liouville manifolds. Moreover, we illustrated a way of local construction of Hermite-Liouville manifolds in the case of having infinitesimal automorphisms, which almost corresponds to a global construction of Hermite-Liouville manifolds on complex projective spaces. In this construction, one can easily check which one is Kahler-Liouville and which one is not.
众所周知,椭球体的测地线流是完全可积的。我们在这项研究中研究了它的更精细的特性。我们获得的结果之一是确定任意点的切割轨迹;一般点为余维一闭球,特殊点为余维二闭球。另一个结果是阐明了一般点的第一共轭位点的结构。特别地,我们证明了一般点的共轭轨迹奇点集由三个连通分量组成,每个分量(开放和密集部分)是尖边。这是所谓的雅可比最后几何陈述的高维版本:“二维椭球上任何非脐点的共轭轨迹恰好有四个尖点”。这些结果证明的主要内容是对雅可比域及其零点的详细研究。此外,我们证明了上述结果对于一些刘维尔流形同样成立。此外,我们研究了埃尔米特-刘维尔流形的局部结构并完全阐明了它们,即使它们不具有无穷小自同构作用,如卡勒的情况-刘维尔流形。此外,我们还说明了在具有无穷小自同构的情况下局部构造 Hermite-Liouville 流形的方法,这几乎对应于复射影空间上 Hermite-Liouville 流形的全局构造。在这种结构中,人们可以很容易地检查哪一个是卡勒-刘维尔,哪一个不是。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Acute triangulations of the regular dodecahedral surface
  • DOI:
    10.1016/j.ejc.2006.04.008
  • 发表时间:
    2007-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jin-ichi Itoh;T. Zamfirescu
  • 通讯作者:
    Jin-ichi Itoh;T. Zamfirescu
Manifolds with simple cut loci
具有简单切割轨迹的流形
Tightness of Graphs : Rsalizations with the two-piece-property
图的紧密性:具有两部分性质的Rsalizations
Tetrahedia passing Through acircular or square hole
四面体穿过圆孔或方孔
Tightness of graphs
图的紧密度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KIYOHARA Kazuyoshi其他文献

KIYOHARA Kazuyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KIYOHARA Kazuyoshi', 18)}}的其他基金

Various problems concerning integrable geodesic flows
有关可积测地流的各种问题
  • 批准号:
    23540089
  • 财政年份:
    2011
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of various problems related to integrable geodesic flows
与可积测地流相关的各种问题的发展
  • 批准号:
    20540077
  • 财政年份:
    2008
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable geodesic flows and related problems
可积测地流及相关问题
  • 批准号:
    16540069
  • 财政年份:
    2004
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable geodesic flows and Masloy's quantization condition
可积测地线流和 Masloy 量子化条件
  • 批准号:
    13640054
  • 财政年份:
    2001
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable geodesic flows and semi-classical approximations
可积测地线流和半经典近似
  • 批准号:
    11640053
  • 财政年份:
    1999
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classical theory and quantization on integrable geodesic flows
可积测地流的经典理论和量化
  • 批准号:
    09640082
  • 财政年份:
    1997
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

一类闭半黎曼流形的几何与拓扑性质
  • 批准号:
    11526055
  • 批准年份:
    2015
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
测地流的动力学研究
  • 批准号:
    11301305
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
与可积系统相关的若干专题
  • 批准号:
    11271345
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Integrable geodesic flows and related problems
可积测地流及相关问题
  • 批准号:
    16540069
  • 财政年份:
    2004
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable geodesic flows and Masloy's quantization condition
可积测地线流和 Masloy 量子化条件
  • 批准号:
    13640054
  • 财政年份:
    2001
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable geodesic flows and semi-classical approximations
可积测地线流和半经典近似
  • 批准号:
    11640053
  • 财政年份:
    1999
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classical theory and quantization on integrable geodesic flows
可积测地流的经典理论和量化
  • 批准号:
    09640082
  • 财政年份:
    1997
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Contact Geometry of Second Order
二阶接触几何
  • 批准号:
    08454012
  • 财政年份:
    1996
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了