Applied analysis of differential equations in math.sci.

math.sci 中微分方程的应用分析。

基本信息

  • 批准号:
    08404007
  • 负责人:
  • 金额:
    $ 6.78万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 1997
  • 项目状态:
    已结题

项目摘要

The purpose of this research is to investigate the structure of not only solutions but also solution spaces for the system of ordinary and partial differential equations in mathematical sciences. Especially the great emphasis is put on the analysis of the change of structures depending on the parameters. 1.System of equations in quantum mechanics : (1) Research on the change of distribution of eigenvalues by the perturbation of the Schrodinger operators and Pauli operators, (2) Inverse scattering problems to reconstruct the potential from the scattering operator for Diracoperator. 2.Systems of equations in fluid dynamics : Heat convection by Boussinesq equations with free surface. The stability analysis of the heat conduction state. The movement of eigenvalues of the linearized system depending on the large change of Rayleigh number and/or Marangoni number are investigated by computer assisted proof and the corresponding instability of the heat conduction state is proved at the specific values of those parameters. The stationary bifurcation can be proved from it. The Hopf bifurcation is under investigations. The analysis on the global structure of solution curves and bifurcation branches is the next subject, for which the new analytical method should be developed. The first step for the analysis by the computer assisted proof for the system of partial differential equations is just taken and a criterion is proposed to guarantee the existence of solution coreesponding specific parameter value by the method. 3.Lattice model and quantum group : The solutions of elliptic function for Yang-Baxter equation are investigated and the theory of quantum groups of elliptic type is established in an unified method. 4.Dynamical systems : Infinitely many homoclinic doubling bifurcations are found for homoclinic orbits with some degeneracy of codimension 3. The conditions of vector fields with two parameters which have this bifurcation phenomena are investigated.
这项研究的目的是研究数学科学中普通和部分微分方程系统的解决方案的结构,还要研究解决方案空间。特别是重点放在对结构变化的分析上,具体取决于参数。 1.量子力学中的方程系统:(1)研究特征值分布的研究通过schrodinger操作员和保利操作员的扰动而变化,(2)逆散射问题以从散射操作员的散射范围中重建越野摩托车的潜力。 2.流体动力学方程式的系统:由自由表面的布斯西尼克方程进行的热对流。热传导状态的稳定性分析。线性化系统的特征值的运动取决于雷利数和/或马龙诺尼数的较大变化,并通过计算机辅助证明进行了研究,并以这些参数的特定值证明了热传导状态的相应不稳定性。可以从中证明固定分叉。 HOPF分叉正在调查中。对解决方案曲线和分叉分支的全局结构的分析是下一个主题,应为其开发新的分析方法。仅采用了计算机辅助证明部分偏微分方程系统进行分析的第一步,并提出了标准以确保通过该方法核心对应特定参数值的解决方案的存在。 3.局部模型和量子组:研究了杨 - 巴克斯特方程的椭圆函数的解,并以统一的方法建立了椭圆类型的量子群的理论。 4.动力系统:发现了具有共同敏感的一定脱位的同质轨道的无限层层次加倍分叉。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kokubu Hiroshi: "Multiple homoclinic bifurcations from orbit-flip,I" International J.Bifurcations and Chaos. 6. 833-850 (1996)
Kokubu Hiroshi:“来自轨道翻转的多个同宿分岔,I”International J.Bifurcations and Chaos。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nishida Takaaki: "Benard-Marangoni heat convection with a deformable surface" Kokyuroku RIMS Kyoto Univ.974. 30-42 (1996)
Nishida Takaaki:“具有可变形表面的Benard-Marangoni 热对流” Kokyuroku RIMS 京都大学974。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Teramoto Yoshiaki: "Navier-Stokes flow, down a vertical column" Proc.Intern.Conf.on Navier-Stokes equations, Theory and numerical Methods. (to appear). (1998)
Teramoto Yoshiaki:“纳维-斯托克斯流,沿垂直柱向下”Proc.Intern.Conf.on 纳维-斯托克斯方程、理论和数值方法。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Iwatsuka Akira: "Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators" Annales de 1'Institut Fourier. (to appear).
Iwatsuka Akira:“二维泡利算子负特征值的渐近分布”Annales de 1Institut Fourier。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kokubu Hiroshi: "Multiple homoclinic bifurcations from orbit-flip,I : Successive homoclinic doublings" Intern.J.of Bifurcations and Chaos. 6-5. 833-850 (1996)
Kokubu Hiroshi:“来自轨道翻转的多个同宿分岔,I:连续同宿加倍” Intern.J.of Bifurcations and Chaos。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NISHIDA Takaaki其他文献

NISHIDA Takaaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NISHIDA Takaaki', 18)}}的其他基金

Toward a Global Analysis for Nonlinear System of Partial Differential Equations
非线性偏微分方程组的全局分析
  • 批准号:
    23540253
  • 财政年份:
    2011
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of study of nonlinear system as applied analysis
非线性系统应用分析研究的发展
  • 批准号:
    20540141
  • 财政年份:
    2008
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of applied analysis toward the global theory for nonlinear systems
非线性系统全局理论的应用分析研究
  • 批准号:
    17340027
  • 财政年份:
    2005
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applied Analysis for Nonlinear Systems
非线性系统的应用分析
  • 批准号:
    14340035
  • 财政年份:
    2002
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Researches on singularities arising in flows and waves
流动和波浪中出现的奇点研究
  • 批准号:
    11214204
  • 财政年份:
    1999
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Comprehensive Research Toward the Global Theory for the System of Nonlinear Partial Differential Equations
非线性偏微分方程组整体理论的综合研究
  • 批准号:
    10304012
  • 财政年份:
    1998
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Modern Analysis for the Equations of Mathematical Science
数学科学方程的现代分析
  • 批准号:
    04402001
  • 财政年份:
    1992
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (A)
Synthetical Researches on Applied Analysis and Computational Mathematics
应用分析与计算数学综合研究
  • 批准号:
    03302009
  • 财政年份:
    1991
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Modern Mathematical Research for Equations in Mathematical Physics
数学物理方程的现代数学研究
  • 批准号:
    02452007
  • 财政年份:
    1990
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Research of applied analysis toward the global theory for nonlinear systems
非线性系统全局理论的应用分析研究
  • 批准号:
    17340027
  • 财政年份:
    2005
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applied Analysis for Nonlinear Systems
非线性系统的应用分析
  • 批准号:
    14340035
  • 财政年份:
    2002
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on Integrable Cellular Automaton and Algebraic Structure of Its Solution Space by Ultradiscretization Method
超离散方法研究可积元胞自动机及其解空间代数结构
  • 批准号:
    09640273
  • 财政年份:
    1997
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modern Analysis for the Equations of Mathematical Science
数学科学方程的现代分析
  • 批准号:
    04402001
  • 财政年份:
    1992
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了