Applied Analysis for Nonlinear Systems
非线性系统的应用分析
基本信息
- 批准号:14340035
- 负责人:
- 金额:$ 7.74万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1)Heat Convection Pronlem : To extend the bifurcation curves obtained by the local bifurcation theory into the analytically unknown region in the solution space, to investigate the change of stability of the solution on the extended bifurcation curves and to know the global bifurcation structure, we use new computer assisted analysis for Boussinesq equation. Especially, we showed by computer assisted proofs the existence of extended bifurcation curves of the roll-type solutions. We also formulate a method to determine the point of secondary bifurcation on the extended bifurcation curves.(2)The cavity flows of Navier-Stokes equation are proved to exist by a revised numerical verification method for the higher Reynolds number. We reformulated the Newton method for the fixed point equation in the infinite dimensional space.(3)The blow-up of the solution of Navier-Stokes equation is proved to be characterized by the two components of vorticity, which means that its three components are not necessary to protect the blow-up.(4)Forced nonlinear wave equations are investigated by the Newton method in the infinite dimensional Banach space. The inverse operator of linearized equation at the approximate (constructed by computers) solution can be approximated in the norm by a pseudo diagonal operator.(5)In the Lorenz model equation we proved the existence of singularly degenerate heteroclinic cycle, which is an invariant set. We suppose that it will give the chaotic attractor by a perturbation.
(1)热对流问题:将局部分岔理论得到的分岔曲线扩展到解空间中解析未知区域,研究解在扩展分岔曲线上稳定性的变化,了解全局分岔结构,我们使用新的计算机辅助分析 Boussinesq 方程。特别是,我们通过计算机辅助证明证明了卷型解的扩展分岔曲线的存在性。我们还制定了确定扩展分岔曲线上二次分岔点的方法。(2)通过改进的较高雷诺数数值验证方法证明了Navier-Stokes方程的空腔流动的存在。我们重新表述了无穷维空间中不动点方程的牛顿法。(3)证明了纳维-斯托克斯方程解的爆炸可以用涡量的两个分量来表征,这意味着它的三个分量是(4)在无限维Banach空间中用牛顿法研究了受迫非线性波动方程。线性化方程在近似解(由计算机构造)处的逆算子可以用伪对角算子在范数上进行近似。(5)在Lorenz模型方程中我们证明了奇简并异宿循环的存在,它是一个不变集。我们假设它会给混沌吸引子带来扰动。
项目成果
期刊论文数量(60)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Viscous Shock Wave and Boundary Layer Solution to an Inflow Problem for Compressible Viscous Gas
- DOI:10.1007/s00220-003-0874-9
- 发表时间:2003-06
- 期刊:
- 影响因子:2.4
- 作者:F. Huang;A. Matsumura;Xiaoding Shi
- 通讯作者:F. Huang;A. Matsumura;Xiaoding Shi
Kyuya Masuda et al.: "Discrete Lax pairs for discrete Toda equation"Commentarii Mathematici, Univ.Sancti Pauli. 52. 191-196 (2003)
Kyuya Masuda 等人:“离散 Toda 方程的离散 Lax 对”Commentarii Mathematici,Univ.Sancti Pauli。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takaaki Nishida et al.: "Some Computer Assisted Proofs for Solutions of the Heat Convection Problems"Reliable Computing. 9. 359-372 (2003)
Takaaki Nishida 等人:“热对流问题解决方案的一些计算机辅助证明”可靠计算。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroshi Kokubu et al.: "Existence of singularly degenerate heteroclinic cycle in the Lorenz system and its dynamical consequences, Part I"J. Dynamics and Differential Equations. (to appear). 2004
Hiroshi Kokubu 等人:“洛伦兹系统中奇异简并异宿循环的存在及其动力学后果,第一部分”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takaaki Nishida et al.: "A Numerical Verification of Nontrivial Solutions for the Heat Convection Problem"Journal of Mathematical Fluid Mechanics. 5. 1-20 (2003)
Takaaki Nishida 等人:“热对流问题非平凡解的数值验证”数学流体力学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHIDA Takaaki其他文献
NISHIDA Takaaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHIDA Takaaki', 18)}}的其他基金
Toward a Global Analysis for Nonlinear System of Partial Differential Equations
非线性偏微分方程组的全局分析
- 批准号:
23540253 - 财政年份:2011
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of study of nonlinear system as applied analysis
非线性系统应用分析研究的发展
- 批准号:
20540141 - 财政年份:2008
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of applied analysis toward the global theory for nonlinear systems
非线性系统全局理论的应用分析研究
- 批准号:
17340027 - 财政年份:2005
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Researches on singularities arising in flows and waves
流动和波浪中出现的奇点研究
- 批准号:
11214204 - 财政年份:1999
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
Comprehensive Research Toward the Global Theory for the System of Nonlinear Partial Differential Equations
非线性偏微分方程组整体理论的综合研究
- 批准号:
10304012 - 财政年份:1998
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
Applied analysis of differential equations in math.sci.
math.sci 中微分方程的应用分析。
- 批准号:
08404007 - 财政年份:1996
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Modern Analysis for the Equations of Mathematical Science
数学科学方程的现代分析
- 批准号:
04402001 - 财政年份:1992
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for General Scientific Research (A)
Synthetical Researches on Applied Analysis and Computational Mathematics
应用分析与计算数学综合研究
- 批准号:
03302009 - 财政年份:1991
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Modern Mathematical Research for Equations in Mathematical Physics
数学物理方程的现代数学研究
- 批准号:
02452007 - 财政年份:1990
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似国自然基金
具有空间结构的泛函微分方程的动力学研究
- 批准号:11171098
- 批准年份:2011
- 资助金额:46.0 万元
- 项目类别:面上项目
相似海外基金
Research of applied analysis toward the global theory for nonlinear systems
非线性系统全局理论的应用分析研究
- 批准号:
17340027 - 财政年份:2005
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)