Algebraic Geometry and Hodge Theory
代数几何和霍奇理论
基本信息
- 批准号:08304002
- 负责人:
- 金额:$ 3.9万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We held also this year the Research Meeting which continues more than ten years :"Hodge Theory Log Geometry Degenerations" October 12-16, 1998, Izumigo, Yatsugatake, Kitakoma-gun. Yamanashi, Organizers : Masaniri Asakura, Tatsuya Arakawa, Sampei Usui.The topics of this year is as in the title. There were 16 expositions on this topics and there were stimulating discussions among the participants.We held the following mini-workshop. All participants exposed their research results an4 had stimulating discussions among them : "Hodge Theory and Algebraic Geometry", January 28-31, 1999, Edel Sasayuri, Yatiyo-cho, Tka-gun, Hyogo, Organizer : Sampei Usui.As in the last year, we had communications with the local people including high school students in leisure time. Both of us were satisfied with these communications.Each research result is as follows : Sampei Usui and Kazuya Kato worked together and succeeded to construct (partial) compactifications of arithmetic quotients of classifying space … More s of Hodge structures with arbitrary Hodge types. This is a generalization of toroidal compactifications by Mumford et al. for Hermitian symmetric domains. We are preparing the paper. Kawamata investigated the deformations of canonical singularities and the extendability of pluri-canonical forms. Mukai made an exposition on polarized K3 surfaces in Euroconference in 1998. Mori made an exposition under the title of Rational curves on algebraic varieties and K Kato made an exposition under the title of Bloch Conjecture and p-adic epsilon elements in the Final Taniguchi Symposium in Nara, December 1998. Usui made an exposition under the title of Logarithmic Hodge structures and their classifying spaces and Masahiko Saito made an exposition under the title of Prepotentials of Yukawa couplings of certain Calabi-Yau 3-folds in NATO Advanced Study Institute in Banif, June 1998. Konno succeeded to solve 1-2-3 Conjecture of Reid completely. Ashikaga and Arakawa worked together and solved the Morsifications for hyper-elliptic pencils. Usa introduced and investigated the notion of geometric shells.The other research results are found in the list of references on the next pages. Less
今年我们还举办了持续十多年的研究会议:“Hodge理论测井几何退化”,1998年10月12日至16日,山梨县八岳泉乡,组织者:朝仓正入、荒川达也、臼井三平。今年的主题如标题所示,共有16个主题的阐述,与会人员进行了热烈的讨论。举办了以下小型研讨会,所有参与者都展示了他们的研究成果,并进行了热烈的讨论:“Hodge理论和代数几何”,1999年1月28日至31日,Edel Sasayuri,Yatiyo-cho,Tka-gun,Hyogo,主办方:臼井三平。与去年一样,我们在闲暇时间与包括高中生在内的当地民众进行了交流,我们双方都对这些交流感到满意。各项研究结果如下: Sampei Usui 和 Kazuya Kato 共同构建了具有任意 Hodge 类型的分类空间算术商的(部分)紧缩,这是 Mumford 等人对 Hermitian 对称域的环形紧缩的推广。 Kawamata 正在准备论文,研究了规范奇点的变形和 Mukai 提出的多规范形式的可扩展性。 1998年欧洲会议上关于极化K3曲面的阐述。Mori在代数簇上的有理曲线的标题下进行了阐述,K Kato在奈良谷口最终研讨会上以布洛赫猜想和p-adic epsilon元素的标题进行了阐述, 1998年12月,臼井作了题为“对数Hodge结构及其分类空间”的阐述,斋藤正彦作了1998 年 6 月,在巴尼夫的北约高级研究所,以“某些 Calabi-Yau 3 倍的 Yukawa 偶合的预势”为题发表了论文。绀野成功地解决了足利和荒川的 1-2-3 猜想。超椭圆铅笔的变形。美国介绍并研究了几何壳的概念。其他研究结果可在下页的参考文献列表中找到。
项目成果
期刊论文数量(186)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Miyanishi, M.and Masuda, K.: "Invariant subvarieties of low codimension in the affine space" Tohoku Math.J.submitted.
Miyanishi, M. 和 Masuda, K.:“仿射空间中低余维的不变子变体”Tohoku Math.J. 提交。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Usa, T.: "Problems on geometric structures of projective embeddings" Report Fac.Sci.Himeji Institute of Technology. 9. 12-29 (1998)
Usa, T.:“投影嵌入的几何结构问题”报告 Fac.Sci.姬路工业学院。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takeshi Usa: "O-modnles,right D-modules,and Jet sheaves" Reports Fac.Sci.H.I.T.(to appear).
Takeshi Usa:“O 型模块、右 D 型模块和喷射滑轮”报道 Fac.Sci.H.I.T.(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroo Tokunaga: "Dihedraal coverings branched along maximizing sextics" Math.Ann.308. 633-648 (1997)
Hiroo Tokunaga:“二面体覆盖物沿着最大化六面体分支”Math.Ann.308。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Kollar & S.Mori: "Birational geometry of algebraic varieties" Cambridge University Press (to appear),
科拉尔
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
USUI Sampei其他文献
USUI Sampei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('USUI Sampei', 18)}}的其他基金
Construction and evolution of log Hodge theory and applications of the fundamental diagram to geometry
对数Hodge理论的构建和演化及基本图在几何中的应用
- 批准号:
17K05200 - 财政年份:2017
- 资助金额:
$ 3.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory of mixed log Hodge structures and its applications
混合对数Hodge结构理论及其应用
- 批准号:
23340008 - 财政年份:2011
- 资助金额:
$ 3.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theory of log mixed Hodge structures and its applications to geometry
对数混合Hodge结构理论及其在几何中的应用
- 批准号:
19340008 - 财政年份:2007
- 资助金额:
$ 3.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of algebraic varieties by log Hosge theory
用对数Hosge理论研究代数簇
- 批准号:
15340009 - 财政年份:2003
- 资助金额:
$ 3.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Interactions of Algebraic Geometry, Hodge Theory and Logarithmic Geometry
代数几何、霍奇理论与对数几何的相互作用研究
- 批准号:
11304001 - 财政年份:1999
- 资助金额:
$ 3.9万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似国自然基金
Dar猜想与对数Minkowski问题
- 批准号:11601310
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于双映射和分形几何对数据点云的直接加工
- 批准号:50575082
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 3.9万 - 项目类别:
Research Grant
Curve counting, moduli, and logarithmic geometry
曲线计数、模数和对数几何
- 批准号:
EP/V051830/1 - 财政年份:2021
- 资助金额:
$ 3.9万 - 项目类别:
Research Grant
Logarithmic Geometry and the Gauged Linear Sigma Model
对数几何和测量线性西格玛模型
- 批准号:
2001089 - 财政年份:2020
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant
Logarithmic Moduli Spaces for Symplectic Geometry: Construction, Applications, and Beyond
辛几何的对数模空间:构造、应用及其他
- 批准号:
2003340 - 财政年份:2020
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant