Algebraic Geometry and Hodge Theory
代数几何和霍奇理论
基本信息
- 批准号:08304002
- 负责人:
- 金额:$ 3.9万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We held also this year the Research Meeting which continues more than ten years :"Hodge Theory Log Geometry Degenerations" October 12-16, 1998, Izumigo, Yatsugatake, Kitakoma-gun. Yamanashi, Organizers : Masaniri Asakura, Tatsuya Arakawa, Sampei Usui.The topics of this year is as in the title. There were 16 expositions on this topics and there were stimulating discussions among the participants.We held the following mini-workshop. All participants exposed their research results an4 had stimulating discussions among them : "Hodge Theory and Algebraic Geometry", January 28-31, 1999, Edel Sasayuri, Yatiyo-cho, Tka-gun, Hyogo, Organizer : Sampei Usui.As in the last year, we had communications with the local people including high school students in leisure time. Both of us were satisfied with these communications.Each research result is as follows : Sampei Usui and Kazuya Kato worked together and succeeded to construct (partial) compactifications of arithmetic quotients of classifying space … More s of Hodge structures with arbitrary Hodge types. This is a generalization of toroidal compactifications by Mumford et al. for Hermitian symmetric domains. We are preparing the paper. Kawamata investigated the deformations of canonical singularities and the extendability of pluri-canonical forms. Mukai made an exposition on polarized K3 surfaces in Euroconference in 1998. Mori made an exposition under the title of Rational curves on algebraic varieties and K Kato made an exposition under the title of Bloch Conjecture and p-adic epsilon elements in the Final Taniguchi Symposium in Nara, December 1998. Usui made an exposition under the title of Logarithmic Hodge structures and their classifying spaces and Masahiko Saito made an exposition under the title of Prepotentials of Yukawa couplings of certain Calabi-Yau 3-folds in NATO Advanced Study Institute in Banif, June 1998. Konno succeeded to solve 1-2-3 Conjecture of Reid completely. Ashikaga and Arakawa worked together and solved the Morsifications for hyper-elliptic pencils. Usa introduced and investigated the notion of geometric shells.The other research results are found in the list of references on the next pages. Less
我们还举行了今年的研究会议,该会议持续了十多年:“ Hodge理论日志几何变化” 1998年10月12日至16日,Izumigo,Yatsugatake,Kitakoma-Gun。 Yamanashi,组织者:Masaniri Asakura,Tatsuya Arakawa,Sampei Usui。今年的主题与标题一样。关于这个主题有16个论述,参与者之间进行了令人兴奋的讨论。我们举行了以下小型工作室。所有参与者都揭示了他们的研究结果AN4在其中进行了刺激的讨论:“霍奇理论和代数几何形状”,1999年1月28日至31日,Edel Sasayuri,Yatiyo-Cho,Tka-gun,Tka-gun,whoogo,noogo,noogo,组织者,组织者:Sampei usui.As as sampei usui.as在上一年中,我们与当地的学生(包括当地的学生在内的时间,都有在包括莱斯学生在内的高级学生。我们俩都对这些通信感到满意。每个研究结果如下:Sampei Usui和Kazuya Kato共同努力,成功地构建了(部分)对分类空间的算术引用的(部分)压缩……更多的Hodge结构具有任意Hodge类型的霍奇结构。这是Mumford等人对环形压缩的概括。对于Hermitian对称域。我们正在准备纸。川塔(Kawamata)研究了规范奇异性的变形和折叠形式的扩展性。穆凯(Mukai)在1998年的欧洲会议中对两极分化的K3表面进行了说明。分类空间和Masahiko Saito在1998年6月在Banif的北约高级研究所的某些Calabi-Yau的Yukawa耦合的标题下进行了展览。Konno成功地解决了Reid的1-2-3猜想。 Ashikaga和Arakawa共同努力,解决了高纤维化铅笔的重视。美国引入并研究了几何壳的概念。其他研究结果在下一页的参考列表中找到。较少的
项目成果
期刊论文数量(186)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yojro Kawamata: "代数多様体論" 共立出版, 223 (1997)
Yojro Kawamata:《代数簇论》Kyoritsu Shuppan,223 (1997)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Kollar & S.Mori: "Birational geometry of algebraic varieties" Cambridge University Press (to appear),
科拉尔
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kawamata, Y.: "Subadjunction of log canonical divisors II" Amer.J.Math.120. 893-899 (1998)
Kawamata, Y.:“对数正则除数的子附加”Amer.J.Math.120。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mukai, S.: "Equations defining a space curve" Warwick preprint. 14. (1998)
Mukai, S.:“定义空间曲线的方程”沃里克预印本。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Miyanishi, M.and Masuda, K.: "Invariant subvarieties of low codimension in the affine space" Tohoku Math.J.submitted.
Miyanishi, M. 和 Masuda, K.:“仿射空间中低余维的不变子变体”Tohoku Math.J. 提交。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
USUI Sampei其他文献
USUI Sampei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('USUI Sampei', 18)}}的其他基金
Construction and evolution of log Hodge theory and applications of the fundamental diagram to geometry
对数Hodge理论的构建和演化及基本图在几何中的应用
- 批准号:
17K05200 - 财政年份:2017
- 资助金额:
$ 3.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory of mixed log Hodge structures and its applications
混合对数Hodge结构理论及其应用
- 批准号:
23340008 - 财政年份:2011
- 资助金额:
$ 3.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theory of log mixed Hodge structures and its applications to geometry
对数混合Hodge结构理论及其在几何中的应用
- 批准号:
19340008 - 财政年份:2007
- 资助金额:
$ 3.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of algebraic varieties by log Hosge theory
用对数Hosge理论研究代数簇
- 批准号:
15340009 - 财政年份:2003
- 资助金额:
$ 3.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Interactions of Algebraic Geometry, Hodge Theory and Logarithmic Geometry
代数几何、霍奇理论与对数几何的相互作用研究
- 批准号:
11304001 - 财政年份:1999
- 资助金额:
$ 3.9万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 3.9万 - 项目类别:
Research Grant
Curve counting, moduli, and logarithmic geometry
曲线计数、模数和对数几何
- 批准号:
EP/V051830/1 - 财政年份:2021
- 资助金额:
$ 3.9万 - 项目类别:
Research Grant
Logarithmic Geometry and the Gauged Linear Sigma Model
对数几何和测量线性西格玛模型
- 批准号:
2001089 - 财政年份:2020
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant
Logarithmic Moduli Spaces for Symplectic Geometry: Construction, Applications, and Beyond
辛几何的对数模空间:构造、应用及其他
- 批准号:
2003340 - 财政年份:2020
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant