THE MATHEMATICAL ANALYSIS TO NON-LINEAR PHENOMENA THROUGH NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS
非线性偏微分方程对非线性现象的数学分析
基本信息
- 批准号:09640276
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1) The p-Laplace operators is well known as the non-linear modification of the usual Laplacian. These operators or their perturbed operators arise in the model equations for the elastic membrane, nonlinear diffusion phenomena and so on. Moreover, the limit state of solutions at p infinity is of great interest from the mathematical or technological view points. The eigenvalue problem of p-Laplacian has been studied by many authors. Since this problem can be dealt with as a variational problem, many results has been known. However, its limit problem at p infinity had been known because it cannot be described in a variatinal problem. We formulate such problem using the notion of the viscosity solution and obtain some results for the limit eigenvalues and the associate eigenfunctions.2) In the ecological model, a reaction-diffusion equation has the nonlinear diffusion with the p-Laplace operator when the diffusion depends on the population pressure nonlinearly. Yamada has studied such equation and obtain the unique and global existence of a solution and sonic results on the set of stationary solutions. He also study the 3 species cooperative competition-diffusion systems with linear diffusion, and obtain the necessary and sufficient condition to the existence of the coexistence solutions.3) Murakami has studied the asymptotic behavior of the solution for several higher dimensional delay differential equations and obtain the existence of periodic solutions which are bifurcated from the equilibrium, in particular, the explicit expressions of the bifurcated periodic solutions.4) Kohda has obtained some conditions on initial value for parabolic problem which guarantee the blow-up of a solution. Moreover, he had shown the behavior of blow-up solution near blow-up time, that is blow-up patterns.
1)P-Laplace操作员被称为通常的Laplacian的非线性修饰。这些操作员或其受干扰的操作员出现在弹性膜,非线性扩散现象等的模型方程中。此外,从数学或技术观点点,P Infinity在P Infinity处的极限状态引起了极大的兴趣。许多作者已经研究了p-Laplacian的特征值问题。由于可以将这个问题作为变异问题处理,因此已知许多结果。但是,它在p Infinity处的极限问题是已知的,因为它无法在变化问题中描述。我们使用粘度溶液的概念提出了此类问题,并获得了极限特征值和关联特征功能的一些结果。2)在生态模型中,当反应扩散方程与P-Laplace操作员非线性扩散时,当扩散取决于种群非线性非线性时。 Yamada研究了这种方程,并在固定溶液集上获得了解决方案和声音结果的独特而全球的存在。他还研究了具有线性扩散的3个物种合作竞争扩散系统,并获得了共存解决方案存在的必要条件。 Kohda已经获得了抛物线问题的初始值的某些条件,这些条件可以保证溶液的爆炸。此外,他在爆炸时间附近显示了爆破解决方案的行为,即爆炸模式。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Yoshida & Y.Yamada: "Global attractivity of coexistence states for a certain class of reaction diffusion systems with 3×3 …" Advances in Mathematical Sciences and Applications. (to appear).
A.Yoshida 和 Y.Yamada:“具有 3×3 的某类反应扩散系统的共存态的全局吸引力”数学科学与应用进展(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Fukagai,M.Ito&K.Narukawa: "Limit asρ→∞ of p-Laplace elgenvalue problems and -inequality of the Poincare type" Diff.Int.Equations. (in press).
N.Fukagai、M.Ito 和 K.Narukawa:“p-拉普拉斯 elgenvalue 问题和 -Poincare 型不等式的极限 asρ→∞”Diff.Int.Equations(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Murakami: "Scable Periodic Solutions for Two-dimensional Linear Delay Differential Equations" Journal of Mathematical Analysis and Applications. 205・2. 512-530 (1997)
K.Murakami:“二维线性时滞微分方程的标度周期解”《数学分析与应用杂志》205・2(1997 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Takeuchi & Y.Yamada: "Asymptotic properties of a reaction - diffusion equation with degenerate p - Laplacian" Nonlinear Analysis, Theory, Methods & Applications.(to appear).
竹内S
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Fukagai,M.Ito & K.Narukawa: "Limit as p→∞ of p-Laplace eigenvalue problems and L^∞-inequality of the Poincere type" Diff.Int.Equations. (in press).
N.Fukagai、M.Ito 和 K.Narukawa:“p-拉普拉斯特征值问题的 p→∞ 和 Poincere 类型的 L^∞-不等式的极限”Diff.Int.Equations(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ITO Masayuki其他文献
ITO Masayuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ITO Masayuki', 18)}}的其他基金
An exploration of causative genes of focal cortical dysplasia with intractable epilepsy, using advanced technologies
利用先进技术探索局灶性皮质发育不良伴难治性癫痫的致病基因
- 批准号:
22659197 - 财政年份:2010
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A molecular study of methyl-CpG binding protein 2 (MeCP2) dysfunction leaded to Rett syndrome phenotype
甲基 CpG 结合蛋白 2 (MeCP2) 功能障碍导致 Rett 综合征表型的分子研究
- 批准号:
18390304 - 财政年份:2005
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Fundamental Study of Molecular and Developmental Pathology for Prevention and Treatment of Perinatal Hypoxic-Ischemic Brain Damage
围产期缺氧缺血性脑损伤防治的分子与发育病理学基础研究
- 批准号:
13671147 - 财政年份:2001
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
THE STUDY OF NON-LINEAR PHENOMENA BY THE ASYMPTOTIC ANALYSIS
非线性现象的渐近分析研究
- 批准号:
11640124 - 财政年份:1999
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Potential-kernels of logarithmic type and their applications
对数型势核及其应用
- 批准号:
03452009 - 财政年份:1991
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似国自然基金
抛物型p-Laplacian方程解的渐近对称性及Liouville型定理
- 批准号:12201293
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
抛物型p-Laplacian方程解的渐近对称性及Liouville型定理
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
p-Laplacian特征值的基本间隙研究
- 批准号:12101125
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
Wolff势及其在p-Laplacian型方程中的应用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Wolff势及其在p-Laplacian型方程中的应用
- 批准号:12101452
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
A Functional Analysis of the Hypoelliptic Laplacian
亚椭圆拉普拉斯算子的泛函分析
- 批准号:
DP230100434 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Discovery Projects
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Methods for multi-ancestry and multi-trait fine-mapping and genetic risk prediction
多祖先、多性状精细定位和遗传风险预测方法
- 批准号:
10678066 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
非線形楕円型方程式の解の符号と変分的エネルギーの解析
非线性椭圆方程解的符号和变分能量分析
- 批准号:
23K03170 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
見本路に依存するジャンプ拡散過程の漸近挙動
取决于样本路径的跳跃扩散过程的渐近行为
- 批准号:
22KF0158 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for JSPS Fellows