Methods for multi-ancestry and multi-trait fine-mapping and genetic risk prediction
多祖先、多性状精细定位和遗传风险预测方法
基本信息
- 批准号:10678066
- 负责人:
- 金额:$ 3.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-25 至 2026-06-24
- 项目状态:未结题
- 来源:
- 关键词:AccelerationBiologyClinicCollectionDataData CollectionData SetDevelopmentDiseaseDrug TargetingElectronic Health RecordEquityEtiologyEuropeanEuropean ancestryGeneticGenetic RiskGoalsIndividualInterventionLaplacianLinkage DisequilibriumMapsMedicalMethodologyMethodsModelingPatternPerformancePhenotypePopulationPopulation HeterogeneityPublishingResearchResearch PersonnelRiskScoring MethodSpeedStatistical ModelsSumTimeVariantbasebiobankcausal variantdata privacydisease-causing mutationdisorder riskelectronic health informationfallsgenetic architecturegenetic epidemiologygenetic informationgenetic varianthealth disparityhealth inequalitieshealth outcome disparityhigh standardimprovedinnovationinsightinterestpolygenic risk scoreprecision medicinerisk predictionscreeningstatisticstraittrend
项目摘要
Project Summary: Two fundamental goals in genetic epidemiology are the identification of genetic variants
that cause disease (fine-mapping) and the development of polygenic risk scores (PRS) that predict individual-
level disease risk using genetic information. As genetic datasets expand, these goals become increasingly
realistic. However, most genetic datasets overrepresent European populations, limiting the generalizability of
scientific findings, the discovery of causal variants, and the accuracy of PRS in non-European populations. If
unaddressed, differences in PRS accuracy will widen ancestry-based health disparities. Most methods in
genetic epidemiology consider one ancestry and disease at a time. This research proposes methods for causal
variant identification and genetic risk prediction that share information across ancestries and diseases.
The first aim is to develop a method for fine-mapping using data from multiple ancestry groups. Causal
variant identification provides insight into disease etiology and helps researchers identify drug targets. The sum
of single effects (SuSiE) model is a powerful approach for fine-mapping in a single population. Incorporating
data from multiple populations can greatly improve fine-mapping due to ancestry-based differences in patterns
of correlation between variants and the presence of variants with causal effects in some, but not all ancestries.
In this aim, MultiSuSiE, a multi-population fine-mapping method motivated by SuSiE will be developed and
applied. SuSiE provides substantial benefits in terms of speed, power, and interpretability compared to other
fine-mapping methods. MultiSuSiE will bring the state-of-the-art in fine-mapping to the multi-ancestry context.
The second aim is to develop and apply ssCTPR, a summary statistic based PRS method that
leverages shared information across diseases. PRS show great promise for informing medical treatment
decisions and disease screening interventions. A recent method, cross-trait penalized regression (CTPR),
boosts prediction accuracy by leveraging shared genetic bases across diseases but requires difficult-to-obtain
individual-level data. In this aim, ssCTPR, a multi-trait summary statistic-based method motivated by CTPR will
be developed and applied. ssCTPR is innovative in its statistical approach: ssCTPR will jointly model variants
and diseases, use penalized regression, and share information across traits using a Laplacian quadratic
penalty that is effective in the multi-disease setting, but has not been investigated using summary statistics.
The third aim is to develop a method that uses the methodological advances of aims 1 and 2 to improve
PRS prediction in non-European populations. PRS prediction accuracy in non-European populations is much
lower than in European populations. As PRS enter the clinic, populations with inequitable health outcomes will
fail to benefit from the latest in precision medicine innovation. In this aim, MultiPolyPred, a method that models
individual risk using multi-ancestry fine-mapping and a multi-disease PRS will be developed and applied. Our
method will be the only non-European PRS method to leverage multi-ancestry fine-mapping.
项目摘要:遗传流行病学的两个基本目标是遗传变异的识别
这会导致疾病(微图)和多基因风险评分(PR)的发展,以预测个体
使用遗传信息的水平疾病风险。随着遗传数据集的扩展,这些目标变得越来越多
实际的。但是,大多数遗传数据集过多代表欧洲人群,从而限制了
科学发现,因果变异的发现以及非欧洲人群中PR的准确性。如果
未解决的PRS准确性差异将扩大基于血统的健康差异。大多数方法
遗传流行病学一次考虑一个祖先和疾病。这项研究提出了因果关系的方法
跨祖先和疾病共享信息的变异识别和遗传风险预测。
第一个目的是使用来自多个祖先组的数据来开发用于仔细映射的方法。因果
变体鉴定提供了对疾病病因的见解,并帮助研究人员识别药物靶标。总和
单个效应(Susie)模型是单个人群中精细映射的强大方法。合并
由于基于祖先的模式差异,来自多个人群的数据可以大大改善精细映射
在某些但并非所有祖先的变体与存在因果关系的变体之间的相关性。
在此目标中,将开发由Susie促进的多人构图的多人绘制方法,并且
应用。与其他
精细映射方法。 MultiSusie将把最新映射的最新映射带入多学院上下文。
第二个目的是开发和应用SSCTPR,这是一种基于统计统计的PRS方法,
利用跨疾病共享信息。 PRS显示出通知医疗的巨大希望
决策和疾病筛查干预措施。最近的一种方法,跨特征惩罚回归(CTPR),
通过利用跨疾病的共享遗传碱来提高预测准确性,但需要难以侵蚀
个人级别数据。在此目标中,SSCTPR是由CTPR促进的基于统计统计的多特征摘要的方法
被开发和应用。 SSCTPR在其统计方法中具有创新性:SSCTPR将共同模拟变体
和疾病,使用惩罚回归并使用laplacian Quadratic在特征上共享信息
在多疾病环境中有效的罚款,但尚未使用摘要统计数据进行调查。
第三个目的是开发一种使用目标1和2的方法学进步来改进的方法
非欧洲人群中的PR预测。非欧洲人口中的PR预测准确性很大
低于欧洲人口。当公关进入诊所时,患有不平等健康成果的人群将
无法从最新的精密医学创新中受益。在此目标中,多重培养,一种模拟的方法
将开发和应用多项式精细映射和多用途PRS的个人风险。我们的
方法将是唯一利用多功能精细映射的非欧洲PRS方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordan Rossen其他文献
Jordan Rossen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
mRNA反式调控基因转录的机制及其生物学功能
- 批准号:32330018
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
增材制造锌镁合金复合椎间融合器降解调控机制与生物学效应研究
- 批准号:52301302
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
- 批准号:82330057
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
秸秆还田下玉/豆间作系统的生物固氮效应及微生物学机制
- 批准号:32301962
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
III-E型CRISPR-Cas系统的结构生物学及其应用研究
- 批准号:32371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Cancer Therapeutics and Host Response Research Program
癌症治疗和宿主反应研究计划
- 批准号:
10625756 - 财政年份:2023
- 资助金额:
$ 3.99万 - 项目类别:
IRAK4 AS A NOVEL IMMUNOTHERAPEUTIC TARGET IN PANCREATIC DUCTAL ADENOCARCINOMA
IRAK4 作为胰腺导管腺癌的新型免疫治疗靶点
- 批准号:
10442874 - 财政年份:2023
- 资助金额:
$ 3.99万 - 项目类别:
The Alzheimer's Disease Tau Platform Clinical Trial
阿尔茨海默病 Tau 平台临床试验
- 批准号:
10655872 - 财政年份:2023
- 资助金额:
$ 3.99万 - 项目类别: