Boundary behavior of anlytic functions and harmonic functions

解析函数和调和函数的边界行为

基本信息

  • 批准号:
    09640230
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

(1) Segawa (with Masaoka (Kyoto Sangyo Univ.)) studied Martin boundary of finitely sheeted unlimited covering surfaces R of a given open Riemann surface R and showed that for a point p of the Martin boundary of R there exists a minimal point p of the Martin boundary of R which lies over p if and only if p is a minimal point. They also characterized the number of minimal Martin boundary points of R which lie over a given minimal Martin boundary point of R, in terms of fine topology. Applying these results, for R with Green's functions, they showed that every positive harmonic function on R is a pullback of a positive harmonic function on R by the projection if and only if for every minimal Martin boundary point p of R the number of minimal Martin boundary points of R which lie over p is one.(2) Tada and Nakai studied existence or nonexistence of Green's functions on a domain D in the Euclidian space R^n with respect to Schrodinger equation with a given signed measure potential on R^n They showed that if D is a continuous domain and there exist Green's functions on D, then there is a domain F which contains D and on which there exist Green's functions.(3) Ueda extended a result by Nevanlinna for three meromorphic functions and their zero-one-pole sets. He also showed that the zero-one-pole set of a certain meromorphic function is thin in a sense.(4) Narita showed that if an algebra A of analytic functions on an open Riemaun surface R separates the points of a certain small subset of R, then A weakly separates the points of R.Moreover, he constructed two examples showing that the result is sharp in a sense.
(1) Segawa (with Masaoka (Kyoto Sangyo Univ.)) studied Martin boundary of finitely sheeted unlimited covering surfaces R of a given open Riemann surface R and showed that for a point p of the Martin boundary of R there exists a minimal point p of the Martin boundary of R which lies over p if and only if p is a minimal point.他们还表征了R的最小Martin边界点的数量,该点位于R的最小Martin边界点上,就精细的拓扑而言。他们表明,对于R Green功能的R应用这些结果,他们表明,R上的每个正谐波功能都是预测对R的正谐波功能的回调,并且仅当每个最小的Martin边界点P的每个最小的Martin边界点P r的最小Martin r边界点的数量是P,p的最小Martin边界点是一个。 Schrodinger方程在r^n上具有给定签名的度量电位,他们表明,如果D是连续的域并且在D上存在Green的功能,则有一个包含D的域F,并且存在Green的功能。(3)Ueda扩展了Nevanlinna的结果,Nevanlinna对三个Meromoromormormormormormormorphic函数及其Zero-One-One-One-One-One-One-One-One-One-One-One-One-One-One-One-Ono-One-One-One-One-One-One-One-One-One-One-Poles集。他还表明,从某种意义上说,一定的零子形态函数的零一孔集很薄。(4)纳里塔表明,如果在开放的riemaun表面上具有分析函数的代数a将Riemaun表面r的分析函数分开,则将某个较小的R的点分开,那么R.More的点弱分离,他构建了两个示例,他会构建两个示例,显示出结果的范围是锋利的。

项目成果

期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Nakai and T.Tada: "Nonextremality of hyperbolicity(in Japanese)" Bull.Daido Inst.Tech.33. 5-16 (1997)
M.Nakai 和 T.Tada:“双曲性的非极端性(日语)”Bull.Daido Inst.Tech.33。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Nakai and T.Tada: "A form of classical Liouville theorem" Proc.Japan Acad., Ser.A. 73. 166-167 (1997)
M.Nakai 和 T.Tada:“经典刘维尔定理的一种形式”Proc.Japan Acad.,Ser.A。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ueda: "Meromorphic functions f and g that share two values CM and two other values in the sence of E_K(β,f)=E_K(β,g)" Kodai Math.J.21(掲載 予定). (1998)
H.Ueda:“亚纯函数 f 和 g 在 E_K(β,f)=E_K(β,g) 意义上共享两个值 CM 和另外两个值”Kodai Math.J.21(将出版)(1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Nakai: "Harmonic functions exprssible as Dirichlet solutions" Kodai Math.J.掲載予定.
M.Nakai:“调和函数可表达为狄利克雷解” 发表于 Kodai Math.J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Nakai and T.Tada: "A form of classical Liouville theorem" Proc.Japan Acad.73. 166-167 (1997)
M.Nakai 和 T.Tada:“经典刘维尔定理的一种形式”Proc.Japan Acad.73。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SEGAWA Shigeo其他文献

SEGAWA Shigeo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SEGAWA Shigeo', 18)}}的其他基金

Study of boundary behavior of holomorphic functions and harmonic functions
全纯函数和调和函数的边界行为研究
  • 批准号:
    16540175
  • 财政年份:
    2004
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Boundary behavior of analytic functions and harmonic functions
解析函数和调和函数的边界行为
  • 批准号:
    11640187
  • 财政年份:
    1999
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Boundary behavior of analytic functions and harmonic functions
解析函数和调和函数的边界行为
  • 批准号:
    11640187
  • 财政年份:
    1999
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CO-operative Research on Functional Analysis, Real Analisis, and Partial Diffential Equations
泛函分析、实分析和偏微分方程合作研究
  • 批准号:
    04302007
  • 财政年份:
    1992
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Clinical Subject and Biospecimen Core
临床受试者和生物样本核心
  • 批准号:
    8468301
  • 财政年份:
  • 资助金额:
    $ 1.15万
  • 项目类别:
Clinical Subject and Biospecimen Core
临床受试者和生物样本核心
  • 批准号:
    8826013
  • 财政年份:
  • 资助金额:
    $ 1.15万
  • 项目类别:
Clinical Subject and Biospecimen Core
临床受试者和生物样本核心
  • 批准号:
    9035345
  • 财政年份:
  • 资助金额:
    $ 1.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了