Perturbartions of integrable Hamiltonian

可积哈密顿量的扰动

基本信息

  • 批准号:
    09640239
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

There is a famous problem, namely, the perturbation problem of the twist map defined on a two-dimensional annulus, which is treated in "Lectures on Celestial Mechanics" written by Siegel-Moser in 1971. Our investigation is concerned with the perturbation of a twist map which is defined not on the annulus but on the product space of the unit disk D and the Lie group G of the fractional linear transformations acting on D. We recall that the twist map t on an annulus is defined by t(r, s)=(r, r + s), where (r, s) stands for the polar coordinate of the annulus. Now we replace the annulus with the product space G x D and introduce the twist map T on G x D by T(a, z)=(a, a(z)). Since this map preserves each {a} x D for all a in G and since their union covers the whole space G x D, the dynamical system determined by T is an integrable system on G x D. Our result is as follows : if a is an elliptic element of G, and the rotation angle of a is a, Diophantine number, then the invariant set {a} x D is persistent under small perturbations of T. Here, recall that every eliptic a in G is similar to an rotation z→exp(ik)z, and we call this real number k the rotation angle of a.
There is a famous problem, namely, the perturbation problem of the twist map defined on a two-dimensional annulus, which is treated in "Lectures on Celestial Mechanics" written by Siegel-Moser in 1971. Our investment is concerned with the perturbation of a twist map which is defined not on the annulus but on the product space of the unit disk D and the Lie group G of the fractional linear transformations acting on D. We recall that环上的扭曲图t由t(r,s)=(r,r + s)定义,其中(r,s)代表环的极坐标。现在,我们用产品空间g x d替换环,并在t(a,z)=(a,a(z))上引入twist映射t。由于该映射保留了所有a中的每个{a} x d,并且由于它们的结合涵盖了整个空间g x d,因此由t确定的动态系统是g xD上的一个可以集成的系统。我们的结果如下:如果a是g的椭圆形元素,并且每个a的旋转角度,并且每个diopophantine n is,diophantine n e e e e e e e e e e e e e e e El persiant persiant persiant persiant pers the persiant e}在G中类似于旋转Z→EXP(IK)Z,我们称此实数k为a的旋转角度。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
亀谷 睦: "複素領域における積分可能系とその摂動について"岩崎敷久教授記念偏微分方程式研究集会講演記録集. 31-40 (2001)
Mutsumi Kameya:“论可积系统及其在复数域中的扰动”纪念岩崎志久教授的偏微分方程研究会议记录 31-40 (2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kametani, M.: "A KAM theory on unit disk, to appear in RIMS kokyuroku, Partial differential equations and time-frequency analysis, (in Japanese)"(2004)
Kametani, M.:“单位圆盘上的 KAM 理论,出现在 RIMS kokyuroku,偏微分方程和时频分析,(日语)”(2004)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
亀谷 睦: "単位円板上でのKAM理論"京都大学数理解析研究所講究録. (印刷中). (2004)
Mutsumi Kametani:“单位圆盘上的 KAM 理论”京都大学数学科学研究所 Kokyuroku(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kametani, M.: "On Integrable systems in complex domains and their perturbations, Professor N. Iwasaki memorial symposium on partial differential equations"Kyoto University (in Japanese). 31-40 (2001)
Kametani, M.:“关于复杂域中的可积系统及其扰动,N. Iwasaki 教授偏微分方程纪念研讨会”京都大学(日语)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAMETANI Makoto其他文献

KAMETANI Makoto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

非线性偏微分方程的能量集中及相关问题
  • 批准号:
    11801421
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
关于两类带电粒子传输模型非常值稳态解的扰动问题
  • 批准号:
    11701264
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Domain perturbation problem for the Stokes equations and its application
Stokes方程的域扰动问题及其应用
  • 批准号:
    26800073
  • 财政年份:
    2014
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The study on perturbation problem for the nonliner elliptic partial differential equation by variational method
非线性椭圆偏微分方程摄动问题的变分法研究
  • 批准号:
    23740124
  • 财政年份:
    2011
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on ideal boundaries of open Riemann surfaces
开黎曼曲面理想边界的研究
  • 批准号:
    17540178
  • 财政年份:
    2005
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scattering and Inverse Scattering for Linear and Nonlinear Wave Propagations
线性和非线性波传播的散射和逆散射
  • 批准号:
    16540204
  • 财政年份:
    2004
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the structure of solutions to Variational Problems, Inverse Problems and Partial Differential Equations
变分问题、反问题和偏微分方程解的结构研究
  • 批准号:
    15540177
  • 财政年份:
    2003
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了