Scattering and Inverse Scattering for Linear and Nonlinear Wave Propagations

线性和非线性波传播的散射和逆散射

基本信息

  • 批准号:
    16540204
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

In this project we have been studying several kind of wave propagation phenomena for the fundamental equations of physics like Maxwell equations and Schr"odinger equations. Our main subjects are in the scattering theory and inverse scattering theory, and these problems are important not only in the fields of mathematical analysis but also in those of applied sciences.We shall summarize the results of the head investigator.In [1] is developed the scattering theory for wave equations in exterior domain with coefficients depending on both space and time. The space-time weighted energy estimates play the crucial role in this problem. In [5] we studied similar problems for Schr"odinger equations with time dependent potentials. The space time LAp-LAq estimates becomes important in this problem. In [2] is obtained a Rellich type asymptotic estimates for generalized eigenfunctions for the Schr"odinger operator with oscillating longrange potentials. The results are applied to show the principle of limiting absorption for this operator. [3] is the joint work with Prof. M. Nakao, and a standard decay condition of energy is shown for wave equations in exterior domain with dissipation which is effective only near infinity. In [4] is studied the inverse scattering for Schr"odinger equations on graphs. These problems are recently recognized to be important not only in the classical field of nano-scale technology (like solid state physics and electrionics) but also in the filed of information stechnology. [4] is obtained as a joint work with Profs V. Marchenko and I. Trooshin, and is restricted to the simplest graph including a compact part. Our joint works will proceed into more general graphs including compact parts. Another work is done on the scattering inverse problem for non-selfadjoint wave equation as a continuation of the former work of the same title (Kluwer Academic Publishers, ISAAK 10 (2003), 303-316).
在这个项目中,我们一直在研究诸如麦克斯韦方程和schr“奥德格方程”等物理基本方程的几种波传播现象。我们的主要主题在散射理论和逆散射理论中,这些问题在数学分析领域不仅重要,而且在应用科学的散射中也应逐步散布。系数取决于时空加权估计,在[5]中起着至关重要的作用。在此问题中,时空LAP-LAQ估计变得很重要。 In [2] is obtained a Rellich type asymptotic estimates for generalized eigenfunctions for the Schr"odinger operator with oscillating longrange potentials. The results are applied to show the principle of limiting absorption for this operator. [3] is the joint work with Prof. M. Nakao, and a standard decay condition of energy is shown for wave equations in exterior domain with dissipation which is effective only near infinity. In [4]研究了图上的schr“ odinger方程的反散射。最近,这些问题不仅在纳米级技术的古典领域(例如固态物理学和电子学)中很重要,而且在信息启动学的提交中也很重要。 [4]作为与Marchenko和I. Trooshin教授的联合作品获得的,并仅限于最简单的图表,包括紧凑的部分。我们的联合作品将继续进行更通用的图表,包括紧凑的零件。在非频道浪潮方程的散射反问题上,这是一项工作,这是同一标题以前的作品的延续(Kluwer学术出版商,Isaak 10(2003),303-316)。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Total energy decay for the wave equation in exterior domain with a dissipation near infinity
耗散接近无穷大的外域波动方程的总能量衰减
On the spectrum of Schr" odinger operators with oscillating longrange potentials
具有振荡长程势的 Schr" odinger 算子谱
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Terai;Naoki;Ohsugi;Hidefumi;Hibi;Takayuki;Kaoru Ikeda;Kiyoshi Mochizuki
  • 通讯作者:
    Kiyoshi Mochizuki
数理物理の微分方程式
数学物理中的微分方程
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    望月 清;I. トルシン
  • 通讯作者:
    I. トルシン
On the spectrum of Schro"dinger operators with oscillating long
具有振荡长的薛定谔算子谱
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Muraishi;S.Yanagita;T.Yoshida;S.Nakagiri;Kiyoshi Mochizuki
  • 通讯作者:
    Kiyoshi Mochizuki
1変数の微分積分
单变量的微积分
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sh.Owa;V.Pescar;M.Nakai;M.Tabata;望月 清
  • 通讯作者:
    望月 清
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MOCHIZUKI Kiyoshi其他文献

MOCHIZUKI Kiyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MOCHIZUKI Kiyoshi', 18)}}的其他基金

Analysis of wave propagation phenomena in the magnetic fields and inverse scattering problems
磁场中的波传播现象和逆散射问题分析
  • 批准号:
    22540204
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Immunological analysis and new immunotherapy of chronic hepatitis C
慢性丙型肝炎的免疫学分析和新的免疫治疗
  • 批准号:
    20249043
  • 财政年份:
    2008
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Analysis of linear and nonlinear wave phenomena and the inverse problem
线性和非线性波动现象及其反问题分析
  • 批准号:
    13640219
  • 财政年份:
    2001
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Nonlinear Waves and Nonlinear Diffusions
非线性波和非线性扩散分析
  • 批准号:
    09440066
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Solutions of Differential Equations and Applications
微分方程的解及其应用
  • 批准号:
    06302012
  • 财政年份:
    1994
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似海外基金

Stability of standing waves for the nonlinear Schr\"odinger equation with an external potential
具有外势的非线性薛定谔方程的驻波稳定性
  • 批准号:
    23K03174
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Semiclassical Analysis of Schrodinger Equations
薛定谔方程的半经典分析
  • 批准号:
    15540149
  • 财政年份:
    2003
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了