Scattering and Inverse Scattering for Linear and Nonlinear Wave Propagations

线性和非线性波传播的散射和逆散射

基本信息

  • 批准号:
    16540204
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

In this project we have been studying several kind of wave propagation phenomena for the fundamental equations of physics like Maxwell equations and Schr"odinger equations. Our main subjects are in the scattering theory and inverse scattering theory, and these problems are important not only in the fields of mathematical analysis but also in those of applied sciences.We shall summarize the results of the head investigator.In [1] is developed the scattering theory for wave equations in exterior domain with coefficients depending on both space and time. The space-time weighted energy estimates play the crucial role in this problem. In [5] we studied similar problems for Schr"odinger equations with time dependent potentials. The space time LAp-LAq estimates becomes important in this problem. In [2] is obtained a Rellich type asymptotic estimates for generalized eigenfunctions for the Schr"odinger operator with oscillating longrange potentials. The results are applied to show the principle of limiting absorption for this operator. [3] is the joint work with Prof. M. Nakao, and a standard decay condition of energy is shown for wave equations in exterior domain with dissipation which is effective only near infinity. In [4] is studied the inverse scattering for Schr"odinger equations on graphs. These problems are recently recognized to be important not only in the classical field of nano-scale technology (like solid state physics and electrionics) but also in the filed of information stechnology. [4] is obtained as a joint work with Profs V. Marchenko and I. Trooshin, and is restricted to the simplest graph including a compact part. Our joint works will proceed into more general graphs including compact parts. Another work is done on the scattering inverse problem for non-selfadjoint wave equation as a continuation of the former work of the same title (Kluwer Academic Publishers, ISAAK 10 (2003), 303-316).
在这个项目中,我们一直在研究麦克斯韦方程和薛定谔方程等物理基本方程的几种波传播现象。我们的主要研究对象是散射理论和逆散射理论,这些问题不仅在数学分析领域以及应用科学领域。我们将总结首席研究员的结果。在[1]中发展了外域波动方程的散射理论,其系数取决于空间和时间。加权能量估计发挥着在这个问题中,我们研究了具有时间相关势的薛定谔方程的类似问题。时空 LAp-LAq 估计在此问题中变得很重要。在[2]中获得了具有振荡长程势的薛定格算子的广义本征函数的Rellich型渐近估计。结果用于显示该算子的限制吸收原理。[3]是与Prof.的共同工作。 M. Nakao 给出了具有耗散的外部域波动方程的标准能量衰减条件,该条件仅在无穷大附近有效。在[4]中研究了逆散射。图上的薛定谔方程。这些问题最近被认为不仅在纳米级技术的经典领域(如固态物理和电子学)而且在信息技术领域都很重要。 [4] 是与 V. Marchenko 教授和 I. Trooshin 教授的联合工作获得的,并且仅限于包括紧凑部分的最简单的图。我们的联合工作将继续研究更通用的图表,包括紧凑的零件。另一项工作是关于非自共轭波动方程的散射反问题,作为同名前一工作的延续(Kluwer 学术出版社,ISAAK 10 (2003), 303-316)。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Total energy decay for the wave equation in exterior domain with a dissipation near infinity
耗散接近无穷大的外域波动方程的总能量衰减
On the spectrum of Schr" odinger operators with oscillating longrange potentials
具有振荡长程势的 Schr" odinger 算子谱
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Terai;Naoki;Ohsugi;Hidefumi;Hibi;Takayuki;Kaoru Ikeda;Kiyoshi Mochizuki
  • 通讯作者:
    Kiyoshi Mochizuki
数理物理の微分方程式
数学物理中的微分方程
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    望月 清;I. トルシン
  • 通讯作者:
    I. トルシン
On the spectrum of Schro"dinger operators with oscillating long
具有振荡长的薛定谔算子谱
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Muraishi;S.Yanagita;T.Yoshida;S.Nakagiri;Kiyoshi Mochizuki
  • 通讯作者:
    Kiyoshi Mochizuki
1変数の微分積分
单变量的微积分
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sh.Owa;V.Pescar;M.Nakai;M.Tabata;望月 清
  • 通讯作者:
    望月 清
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MOCHIZUKI Kiyoshi其他文献

MOCHIZUKI Kiyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MOCHIZUKI Kiyoshi', 18)}}的其他基金

Analysis of wave propagation phenomena in the magnetic fields and inverse scattering problems
磁场中的波传播现象和逆散射问题分析
  • 批准号:
    22540204
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Immunological analysis and new immunotherapy of chronic hepatitis C
慢性丙型肝炎的免疫学分析和新的免疫治疗
  • 批准号:
    20249043
  • 财政年份:
    2008
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Analysis of linear and nonlinear wave phenomena and the inverse problem
线性和非线性波动现象及其反问题分析
  • 批准号:
    13640219
  • 财政年份:
    2001
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Nonlinear Waves and Nonlinear Diffusions
非线性波和非线性扩散分析
  • 批准号:
    09440066
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Solutions of Differential Equations and Applications
微分方程的解及其应用
  • 批准号:
    06302012
  • 财政年份:
    1994
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似国自然基金

基于手征微扰理论和薛定谔方程的介子-重子散射和重子共振态研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
带正则位势的非线性 Schrodinger 方程的散射理论
  • 批准号:
    11701141
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
线性和非线性色散方程的动力与散射理论
  • 批准号:
    11671163
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
宏观传播效应对分子在强激光场中产生高次谐波的影响
  • 批准号:
    11664035
  • 批准年份:
    2016
  • 资助金额:
    42.0 万元
  • 项目类别:
    地区科学基金项目
非线性薛定谔方程以及多参数、多线性乘子L^p估计的研究
  • 批准号:
    11501021
  • 批准年份:
    2015
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Stability of standing waves for the nonlinear Schr\"odinger equation with an external potential
具有外势的非线性薛定谔方程的驻波稳定性
  • 批准号:
    23K03174
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Semiclassical Analysis of Schrodinger Equations
薛定谔方程的半经典分析
  • 批准号:
    15540149
  • 财政年份:
    2003
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了