Analysis of linear and nonlinear wave phenomena and the inverse problem

线性和非线性波动现象及其反问题分析

基本信息

项目摘要

In this project, we are mainly concerned with the analysis of wave phenomena governed by some basic partial differential equations in Applied Mathematics and Physics, and also by some model equations appearing in Chemistry and Biology. Summarizing the results obtained by the investigators in the period 200 1-2003, we can say the objective of this project is accomplished fruitfully.The head investigator published 5 papers analyzing linear and nonlinear waves and nonlinear diffusions. The topics include the following:(1)Nonlinear parabolic equations: Large time asymptotics of solutions for generalized KPP equation are studied. Precise formula obtained here is expected to have many applications in Biology.(2)Inverse spectral problem: Inverse problem to determine the potential from some spectral data is studied. We obtained a uniqueness results for Sturm-Liouville operator and for Dirac operator on firiete interval. Our problem 'to determine the potential from interior spectral data' is a new formulation and is expected to be applied to many other operators.(3)Semilinear wave equations: Asymptotic for wave equation with nonlinear dissipation is studied. We require that the dissipation is inhomogeneous in' space and time and sufficient conditions are obtained for solutions to be asymptoically free.(4)Inverse scattering problem: First the direct scattering theory is established for wave equation with first time derivative term, and then the coefficient of the term is shown to be reconstructed from the scattering amplitude with a fixed energy.Each investigator developed many interesting results on the related fields.
在这个项目中,我们主要关注对应用数学和物理学中一些基本偏微分方程的波浪现象的分析,以及化学和生物学中出现的某些模型方程。总结了研究人员在200 1-2003期间获得的结果,我们可以说该项目的目的是有效完成的。首席研究员发表了5篇分析线性和非线性波和非线性扩散的论文。主题包括以下内容:(1)非线性抛物线方程:研究通用KPP方程的溶液的较大时间渐近学。预计此处获得的精确公式将在生物学中具有许多应用。(2)逆频谱问题:逆问题确定来自某些光谱数据的潜力。我们为Sturm-Liouville运营商和Dirac Operator在Firiete间隔中获得了独特的结果。我们的问题“确定内部光谱数据的潜力”是一种新的公式,预计将应用于许多其他操作员。(3)半连续波方程:对具有非线性耗散的波动方程渐近。我们要求耗散在“空间和时间”中是不均匀的,并且获得了足够的条件,以使解决方案在渐近上无均匀。(4)逆散射问题:首先,以首次衍生术语为波动方程建立了直接散射理论,然后建立了直接散射理论,然后建立了直接散射理论。该术语的系数被证明是通过固定能量从散射幅度重建的。每个研究者在相关场上产生了许多有趣的结果。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Mochizuki, I.A.Shishmarev: "Large time asymptotics of small solutions to generalized Kolmogorov-Petrovskii-Piskunov equations"Funkcialai Ekvacioj. 44. 99-117 (2001)
K.Mochizuki、I.A.Shishmarev:“广义 Kolmogorov-Petrovskii-Piskunov 方程小解的大时间渐近”Funkcialai Ekvacioj。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Mochizuki, I.A.Shishmarev: "Large time asymptotics of small solutions to generalized Kohnogorov-Petrovskii-Piskunov equation"Fukcialai Ekvacioj. 44. 99-117 (2001)
K.Mochizuki、I.A.Shishmarev:“广义 Kohnogorov-Petrovskii-Piskunov 方程小解的大时间渐近”Fukcialai Ekvacioj。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Muramatu, S.Taoka: "The initial value problem for the 1-D semilinear SchrO" dinger equation in Besov spaces"J.Math.Soc.Japan. (To appear).
T.Muramatu、S.Taoka:“Besov 空间中一维半线性 SchrO”dinger 方程的初始值问题”J.Math.Soc.Japan。(待出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Kurata, M.Shibata: "On a one-dimensional variational problem related to Cahn-Hilliard energy in a bent strip-like domain"Nonlinear Analysis. 47. 1059-1068 (2001)
K.Kurata、M.Shibata:“关于弯曲带状域中与 Cahn-Hilliard 能量相关的一维变分问题”非线性分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Hidano: "Scattering and self-similar solutions for the nonlinear wave equation"Differential Integral Eqs.. 15. 405-462 (2002)
K.Hidano:“非线性波动方程的散射和自相似解”Differential Integral Eqs.. 15. 405-462 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MOCHIZUKI Kiyoshi其他文献

MOCHIZUKI Kiyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MOCHIZUKI Kiyoshi', 18)}}的其他基金

Analysis of wave propagation phenomena in the magnetic fields and inverse scattering problems
磁场中的波传播现象和逆散射问题分析
  • 批准号:
    22540204
  • 财政年份:
    2010
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Immunological analysis and new immunotherapy of chronic hepatitis C
慢性丙型肝炎的免疫学分析和新的免疫治疗
  • 批准号:
    20249043
  • 财政年份:
    2008
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Scattering and Inverse Scattering for Linear and Nonlinear Wave Propagations
线性和非线性波传播的散射和逆散射
  • 批准号:
    16540204
  • 财政年份:
    2004
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Nonlinear Waves and Nonlinear Diffusions
非线性波和非线性扩散分析
  • 批准号:
    09440066
  • 财政年份:
    1997
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Solutions of Differential Equations and Applications
微分方程的解及其应用
  • 批准号:
    06302012
  • 财政年份:
    1994
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似海外基金

New development of Lipschitz structure/collapsing theory of Alexandrov spaces and inverse spectral problem
Lipschitz结构/Alexandrov空间塌陷理论与逆谱问题的新进展
  • 批准号:
    26287010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of Inverse Problems for the Heat equation Based on the Theory of Stochastic Control
基于随机控制理论的热方程反问题研究
  • 批准号:
    16540100
  • 财政年份:
    2004
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical and Mathematical Analysis for the reconstruction for solutions of inverse and ill-posed problems by regularization methods
通过正则化方法重构逆问题和病态问题解的数值和数学分析
  • 批准号:
    13440031
  • 财政年份:
    2001
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Geometric Structures on Manifolds and Graphs
流形和图上的几何结构
  • 批准号:
    12640073
  • 财政年份:
    2000
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Solutions to Partial Differential Equations, Variational problems and Inverse. Problems
偏微分方程、变分问题和逆问题的解的研究。
  • 批准号:
    11640175
  • 财政年份:
    1999
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了