Quantum Theory on Manifolds and its Application to Gauge Theory

流形的量子理论及其在规范理论中的应用

基本信息

  • 批准号:
    07804015
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

I considered quantization on a homogeneous space G/H as a first step toward quantizing on a manifold having a non-trivial topology. I showed that the inequivalent quantizations known to be allowed on the space G/H can be reproduced from the quantum theory on the group G by regarding the system as a constraint system and using Dirac's procedure applicable to such systems. I then showed that the induced gauge potential that appears on the space G/H is the canonical connection, and that it is essentially identical to the gauge potential which arises in the standard setting of Berry's phase. Next, as another class of models possessing a non-trivial manifold, I considered SL (n) Toda lattice models obtained by Hamiltonian reduction from the WZNW model. I classified all possible types of phases spaces obtained this way for n=2,3,4, and, in particular for the simplest case n=2, constructed the quantum theory explicitly where it is found that the theory is characterized by an angle parameter rheta.Quite independently of the above line of research, I also studied the path-integral approach to quantizing on G/H.I found that, by generalizing the approach for multiply-connected spaces, it is possible to recover the inequivalent quantizations if we add a weight factor given by irreducible representations of the subgroup H,and that this leads precisely to the system with the constraints mentioned above. Implication of this result to gauge theories is also examined in this path-integral framework.
我将齐次空间 G/H 上的量化视为在具有非平凡拓扑的流形上进行量化的第一步。我表明,通过将系统视为约束系统并使用适用于此类系统的狄拉克程序,可以从 G 群的量子理论中重现空间 G/H 上已知的不等价量子化。然后我证明了空间 G/H 上出现的感应规范电势是规范联系,并且它与贝里相位标准设置中出现的规范电势本质上相同。接下来,作为另一类具有非平凡流形的模型,我考虑了通过 WZNW 模型的哈密顿约简得到的 SL (n) Toda 晶格模型。我对以这种方式获得的 n=2,3,4 的所有可能类型的相空间进行了分类,特别是对于最简单的情况 n=2,明确地构建了量子理论,发现该理论的特征在于角度参数rheta。与上述研究完全独立,我还研究了 G/H 量化的路径积分方法。我发现,通过推广多连通空间的方法,如果我们添加一个权重系数由子群 H 的不可约表示给出,这恰好导致具有上述约束的系统。这个结果对规范理论的影响也在这个路径积分框架中得到了检验。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
L.Feher and I.Tsutsui: "Regularization of Toda lattices by Hamiltonian reduction" Journ. Geom. Phys.21. 97-135 (1997)
L.Feher 和 I.Ttsutsui:“通过哈密顿量约简对户田晶格进行正则化”杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
D.McMullan,I.Tsutsui: "On the Emergence of Gange Structures and Generalized Spin when Quantizing on a Coset Space G/H" Annal.Phys.237. 269-321 (1995)
D.McMullan,I.Tsutsui:“在陪集空间 G/H 上量化时恒河结构和广义自旋的出现”Annal.Phys.237。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
L.Feher,I.Tsutsui: "Regularization of Toda lattices by Hamiltonian Reduction" Journ.Geom.Phys.21. 97-135 (1997)
L.Feher,I.Tsutsui:“通过哈密顿约简对户田晶格进行正则化”Journ.Geom.Phys.21。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
P.Le'vay,D.McMullan,I.Tsutsui: "The Canonical Connection in Quantum Mechanics" Journ.Math.Phys.37. 625-636 (1996)
P.Levay、D.McMullan、I.Tsutsui:“量子力学中的规范联系”Journ.Math.Phys.37。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
L.Fehe'r,I.Tsutsui: "Regularization of Toda Lattices by Hamiltonian Reduction" Journ.Geom.Phys.21. 97-135 (1997)
L.Feher,I.Tsutsui:“通过哈密顿量约化户田格子的正则化”Journ.Geom.Phys.21。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUTSUI Izumi其他文献

TSUTSUI Izumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUTSUI Izumi', 18)}}的其他基金

The Weak Value and the Weak Measurement: their Foundation and Application
弱价值与弱测量:基础与应用
  • 批准号:
    25400423
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Study on the Nonlocality of Quantum Mechanics based on Mesons
基于介子的量子力学非定域性理论研究
  • 批准号:
    20540391
  • 财政年份:
    2008
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Physical Properties of Quantum Singularity
量子奇点物理性质研究
  • 批准号:
    16540354
  • 财政年份:
    2004
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

面向增材制造的汽车轻质结构拓扑优化方法研究
  • 批准号:
    51805032
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
空间结构的金属节点轻量化设计与智能制造的研究
  • 批准号:
    51778283
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
超轻量化飞行器构件宏微多级结构一体化设计方法
  • 批准号:
    51705165
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
人类语音复杂系统的量化及理论研究
  • 批准号:
    11505071
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
贵金属掺杂氡、卤族元素团簇中弱相互作用的量化拓扑研究
  • 批准号:
    U1404210
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

Creation of new structure of nuclear fusion coil by quantum annealing and 3D topology optimization.
通过量子退火和 3D 拓扑优化创建核聚变线圈新结构。
  • 批准号:
    23K03826
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Network Topology-Aware Service Chaining in NFV Network
NFV 网络中的网络拓扑感知服务链
  • 批准号:
    21K21288
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Calculations of representation categories of quantum groups by linear skein theory and its applications to quantum topology
线性绞丝理论计算量子群表示范畴及其在量子拓扑中的应用
  • 批准号:
    19K14528
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Algebraic and category-theoretic structures in low-dimensional topology
低维拓扑中的代数和范畴论结构
  • 批准号:
    18H01119
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantum anomaly and topology in layered ruthenates
层状钌酸盐中的量子异常和拓扑
  • 批准号:
    17K14326
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了