Combining Deep Learning and Coarse Grained Simulation Methods to Study High-Dimensional NanoBiophysical Systems
结合深度学习和粗粒度模拟方法来研究高维纳米生物物理系统
基本信息
- 批准号:RGPIN-2020-07145
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We are in the midst of an artificial intelligence (AI) revolution. Computational advances have culminated in massive strides being taken towards having computers "think". Machine learning (ML) has driven most of these advancements where computational algorithms and methodologies - most notably neural networks - are employed to identify patterns in large data sets and then, based on this training, predict outcomes when given smaller amounts of input data. In the past couple of years ML has fundamentally changed established practices from evaluating medical data to fraud detection to financial prediction. Its impact on scientific research is equally astounding. This grant application focuses on the use of ML to solve mathematical equations. While we understand that physical things and processes can be modelled with mathematical equations, finding the equations is often less challenging than actually solving them. ML provides a highly effective and powerful way to solve equations and produce meaningful answers. We intend to advance ML techniques to solve partial differential equations (PDEs). These are a class of equations that can describe complex processes and environments. PDEs can describe the flow of molecules within nanofluidic devices which have dimensions on the order of nanometers (a nm is around ten thousand times smaller than the width of human hair). They are able to isolate, characterize, and modify single biological molecules such as DNA and proteins. A primary use of these devices is in advanced medical practices such as personalized medicine where risk, diagnosis, and therapeutics are informed by one's genetic makeup. Our goal is to develop machine learning methods and techniques to significantly enhance nanofluidic device research and design. ML methods can solve systems that depend on a large number of factors (i.e., high dimensional), allowing the study of complex systems across all possible situations; this is difficult to do with other approaches. This enables us to efficiently refine current and design new devices for tasks such as identifying unique DNA strands that indicate a particular disease. While our focus is on developing these techniques for nanofluidic devices, this knowledge will translate to a vast array of other scenarios from nuclear reactor design to understanding how cream mixes with coffee. By developing ML as a powerful tool for solving PDEs, our research can also benefit computation-based research in other academic labs as well as industrial R&D. This work will help position Canadian academic research at the forefront of the ML revolution. It also will equip Canadian businesses with a powerful tool for rapid and cost efficient development of their technologies. Through training undergraduate and graduate students, this research program will produce the highly qualified personnel needed to ensure Canada remains at the leading edge of a rapidly evolving and increasingly technological global economy.
我们正处于人工智能 (AI) 革命之中。计算的进步最终使计算机在“思考”方面取得了巨大的进步。机器学习 (ML) 推动了大部分进步,其中计算算法和方法(尤其是神经网络)用于识别大型数据集中的模式,然后基于这种训练,在给定少量输入数据时预测结果。在过去几年中,机器学习从根本上改变了从评估医疗数据到欺诈检测再到财务预测的既定实践。它对科学研究的影响同样令人震惊。该拨款申请的重点是使用机器学习来求解数学方程。虽然我们知道物理事物和过程可以用数学方程进行建模,但找到方程通常比实际求解方程更容易。机器学习提供了一种高效且强大的方法来求解方程并产生有意义的答案。我们打算推进机器学习技术来求解偏微分方程 (PDE)。这些是一类可以描述复杂过程和环境的方程。偏微分方程可以描述纳米流体装置内分子的流动,其尺寸为纳米量级(一纳米比人类头发的宽度小一万倍左右)。他们能够分离、表征和修饰单个生物分子,例如 DNA 和蛋白质。这些设备的主要用途是先进的医疗实践,例如个性化医疗,其中风险、诊断和治疗是根据一个人的基因构成来确定的。我们的目标是开发机器学习方法和技术,以显着增强纳米流体设备的研究和设计。机器学习方法可以解决依赖于大量因素(即高维)的系统,从而可以研究所有可能情况下的复杂系统;这是其他方法很难做到的。这使我们能够有效地改进现有设备并设计新设备,以完成诸如识别指示特定疾病的独特 DNA 链等任务。虽然我们的重点是为纳米流体设备开发这些技术,但这些知识将转化为大量其他场景,从核反应堆设计到了解奶油如何与咖啡混合。 通过将机器学习开发为解决偏微分方程的强大工具,我们的研究还可以使其他学术实验室中基于计算的研究以及工业研发受益。这项工作将有助于将加拿大学术研究置于机器学习革命的前沿。它还将为加拿大企业提供强大的工具,以快速且经济高效地开发其技术。通过培训本科生和研究生,该研究计划将培养所需的高素质人才,以确保加拿大在快速发展和日益技术化的全球经济中保持领先地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
deHaan, Hendrick其他文献
deHaan, Hendrick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('deHaan, Hendrick', 18)}}的其他基金
Combining Deep Learning and Coarse Grained Simulation Methods to Study High-Dimensional NanoBiophysical Systems
结合深度学习和粗粒度模拟方法来研究高维纳米生物物理系统
- 批准号:
RGPIN-2020-07145 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Combining Deep Learning and Coarse Grained Simulation Methods to Study High-Dimensional NanoBiophysical Systems
结合深度学习和粗粒度模拟方法来研究高维纳米生物物理系统
- 批准号:
RGPIN-2020-07145 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Combining Deep Learning and Coarse Grained Simulation Methods to Study High-Dimensional NanoBiophysical Systems
结合深度学习和粗粒度模拟方法来研究高维纳米生物物理系统
- 批准号:
RGPIN-2020-07145 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Combining Deep Learning and Coarse Grained Simulation Methods to Study High-Dimensional NanoBiophysical Systems
结合深度学习和粗粒度模拟方法来研究高维纳米生物物理系统
- 批准号:
RGPIN-2020-07145 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Computational Nanobiophysics: Modeling and Simulating Biomolecules in Confinement
计算纳米生物物理学:约束中生物分子的建模和模拟
- 批准号:
RGPIN-2014-06091 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Computational Nanobiophysics: Modeling and Simulating Biomolecules in Confinement
计算纳米生物物理学:约束中生物分子的建模和模拟
- 批准号:
RGPIN-2014-06091 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Computational Nanobiophysics: Modeling and Simulating Biomolecules in Confinement
计算纳米生物物理学:约束中生物分子的建模和模拟
- 批准号:
RGPIN-2014-06091 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Computational Nanobiophysics: Modeling and Simulating Biomolecules in Confinement
计算纳米生物物理学:约束中生物分子的建模和模拟
- 批准号:
RGPIN-2014-06091 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Computational Nanobiophysics: Modeling and Simulating Biomolecules in Confinement
计算纳米生物物理学:约束中生物分子的建模和模拟
- 批准号:
RGPIN-2014-06091 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Computational Nanobiophysics: Modeling and Simulating Biomolecules in Confinement
计算纳米生物物理学:约束中生物分子的建模和模拟
- 批准号:
RGPIN-2014-06091 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于深度学习的深地叠前时空域地震子波提取方法研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于数物融合深度学习的深大基坑施工灾变风险在线预测与防控研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向超深储层预测的稀疏变换学习与低秩联合正则化叠前地震反演
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
面向深空探测的AI网络集群高效智能信号处理关键理论与方法的研究
- 批准号:61901152
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于三支决策和强化学习的深空探测器非预期故障自主诊断与系统重构研究
- 批准号:61903015
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:@NASA: Combining Physics and Deep Learning for Accurate River Discharge and Bathymetry Estimation from the Surface Water and Ocean Topography Mission
RII Track-4:@NASA:结合物理学和深度学习,通过地表水和海洋地形任务进行准确的河流流量和水深测量估计
- 批准号:
2327502 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
- 批准号:
10884028 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
MCA: Combining Drone Imagery and Deep Learning to Map Fine-Scale Heterogeneity in Arctic Vegetation
MCA:结合无人机图像和深度学习来绘制北极植被的精细尺度异质性地图
- 批准号:
2321530 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
- 批准号:
10564534 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
RII Track-4:@NASA: Combining Physics and Deep Learning for Accurate River Discharge and Bathymetry Estimation from the Surface Water and Ocean Topography Mission
RII Track-4:@NASA:结合物理学和深度学习,通过地表水和海洋地形任务进行准确的河流流量和水深测量估计
- 批准号:
2327502 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant