RII Track-4:@NASA: Combining Physics and Deep Learning for Accurate River Discharge and Bathymetry Estimation from the Surface Water and Ocean Topography Mission
RII Track-4:@NASA:结合物理学和深度学习,通过地表水和海洋地形任务进行准确的河流流量和水深测量估计
基本信息
- 批准号:2327502
- 负责人:
- 金额:$ 24.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Estimation of river bottom elevation and discharge plays an essential role in many practical applications such as safe and efficient maritime transportation, flood risk management, and water management planning. However, in-situ measurement of river depth and discharge is logistically challenging, expensive, and time-consuming. Recently launched Surface Water and Ocean Topography (SWOT) satellite mission opens a new possibility to estimate river discharge and depth measurements by providing the river water elevation above sea level, river width, and slope over the watershed to continental scales. This proposed research will enable the development and application of large-scale accurate river depth measurements and discharge estimation using the recently acquired SWOT data sets. The research will also focus on the effect of surface-groundwater interaction on river discharge estimation. The fellowship program will train the PI and a graduate student from the University of Hawaii at Manoa in both technical aspects of SWOT data processing and analysis as well as computational approaches for real-time water depth estimation. The collaborative research will ultimately improve the research capacity of the home institution and benefit the State of Hawaii, which is the state that resorts to groundwater resources and is subject to both water management and balance.This EPSCoR Research Infrastructure Improvement (RII) Track-4: EPSCoR Research Fellows (RII Track-4:@NASA) will provide a fellowship to an Associate Professor and training for a graduate student at the University of Hawaii at Manoa. This work would be conducted in collaboration with researchers at NASA Jet Propulsion Laboratory (JPL). The PI and one graduate student will visit the Terrestrial Hydrology group at NASA JPL to learn the SWOT mission data acquisition and associated river discharge estimation from experts in the field. The PI has actively developed river dynamics-based machine-learning techniques to estimate river bathymetry and discharge and their corresponding uncertainties in a computationally efficient unified framework. The main objectives of this research study are to advance the currently used methods to account for the surface-groundwater interaction, improve the accuracy of the discharge estimation, and develop a new data assimilation method to estimate spatiotemporal river bathymetry and discharge using the SWOT data. For close-to-real-time bathymetry estimation, the shallow water equations will be approximated through physics-informed neural networks with a controlled accuracy for real-time simulation. The proposed methods will be packaged in a Python library, with the intent of releasing them in a public repository once properly tested and quality checked. Expertise gained during this fellowship will enable the PI to train and educate students at the University of Hawaii at Manoa in cutting-edge remote sensing data analysis and machine learning-based assimilation techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
河底高程和流量的估算在许多实际应用中发挥着重要作用,例如安全高效的海上运输、洪水风险管理和水管理规划。然而,河流深度和流量的现场测量在后勤方面具有挑战性、昂贵且耗时。最近发射的地表水和海洋地形 (SWOT) 卫星任务通过提供大陆尺度的河流水位高于海平面的高度、河流宽度和流域坡度,为估计河流流量和深度测量提供了新的可能性。这项研究将利用最近获得的 SWOT 数据集来开发和应用大规模精确的河流深度测量和流量估计。该研究还将重点关注地表水与地下水相互作用对河流流量估算的影响。该奖学金计划将对 PI 和夏威夷大学马诺阿分校的一名研究生进行 SWOT 数据处理和分析技术方面以及实时水深估计的计算方法方面的培训。这项合作研究最终将提高母机构的研究能力,并使夏威夷州受益,夏威夷州是一个利用地下水资源并受到水管理和平衡影响的州。EPSCoR 研究基础设施改进 (RII) Track-4 :EPSCoR 研究员(RII Track-4:@NASA)将为夏威夷大学马诺阿分校的副教授提供奖学金并为研究生提供培训。这项工作将与 NASA 喷气推进实验室 (JPL) 的研究人员合作进行。 PI 和一名研究生将访问 NASA JPL 的陆地水文小组,向该领域的专家学习 SWOT 任务数据采集和相关河流流量估算。 PI 积极开发基于河流动力学的机器学习技术,以在计算高效的统一框架中估计河流测深和流量及其相应的不确定性。本研究的主要目标是改进目前用于解释地表水与地下水相互作用的方法,提高流量估算的准确性,并开发一种新的数据同化方法,利用 SWOT 数据估算时空河流测深和流量。为了接近实时的测深估计,浅水方程将通过物理信息神经网络进行近似,并具有实时模拟的受控精度。所提出的方法将打包在 Python 库中,目的是在经过适当测试和质量检查后将其发布到公共存储库中。在此奖学金期间获得的专业知识将使 PI 能够对夏威夷大学马诺阿分校的学生进行尖端遥感数据分析和基于机器学习的同化技术的培训和教育。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonghyun Lee其他文献
Randomized algorithms for generalized Hermitian eigenvalue problems with application to computing Karhunen–Loève expansion
广义埃尔米特特征值问题的随机算法及其在计算 Karhunen-Loève 展开中的应用
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:4.3
- 作者:
A. Saibaba;Jonghyun Lee;P. Kitanidis - 通讯作者:
P. Kitanidis
Hwabyung and Depressive Symptoms among Korean Immigrants
华平与韩国移民的抑郁症状
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jonghyun Lee - 通讯作者:
Jonghyun Lee
Thermophysical properties of the TiAl-2Cr-2Nb alloy in the liquid phase measured with an electromagnetic levitation device on board the International Space Station, ISS-EML
使用国际空间站 ISS-EML 上的电磁悬浮装置测量液相 TiAl-2Cr-2Nb 合金的热物理性能
- DOI:
10.1515/ijmr-2021-8266 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:0.8
- 作者:
R. Wunderlich;M. Mohr;Yue Dong;U. Hecht;Douglas M. Matson;R. Hyers;G. Bracker;Jonghyun Lee;S. Schneider;X. Xiao;H. Fecht - 通讯作者:
H. Fecht
Quantitative proteomic analysis of aqueous humor from patients with drusen and reticular pseudodrusen in age-related macular degeneration
年龄相关性黄斑变性玻璃膜疣和网状假性玻璃膜疣患者房水的定量蛋白质组学分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2
- 作者:
Je;Daehan Lim;K. Park;Jae‐Byoung Chae;Hyo;Jonghyun Lee;Hyewon Chung - 通讯作者:
Hyewon Chung
The Effect of Bevacizumab versus Ranibizumab in the Treatment of Corneal Neovascularization: A Preliminary Study
贝伐单抗与雷珠单抗治疗角膜新生血管的效果:初步研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jin‐Hyoung Kim;H. Seo;Hyun;Jonghyun Lee;S. Choi;Doh Lee - 通讯作者:
Doh Lee
Jonghyun Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向小样本教育场景的学生知识追踪方法研究
- 批准号:62307006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多精度目标追踪的多模态统一模型
- 批准号:62302328
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维黏弹性TTI介质中地震射线追踪及走时成像方法研究
- 批准号:42304060
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单像素探测的高速运动目标追踪与成像技术研究
- 批准号:62305144
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
- 批准号:32371103
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
RII Track-4: @NASA: Investigation of Erosive Wear Resistance of Ceramic Parts Produced by Additive Manufacturing
RII Track-4:@NASA:增材制造生产的陶瓷零件的耐冲蚀磨损性能研究
- 批准号:
2327252 - 财政年份:2024
- 资助金额:
$ 24.77万 - 项目类别:
Standard Grant
RII Track-4: @NASA: Next Generation Hyperspectral Approaches to Detect Harmful Algal Blooms
RII Track-4:@NASA:检测有害藻华的下一代高光谱方法
- 批准号:
2327287 - 财政年份:2024
- 资助金额:
$ 24.77万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Methane Dynamics Described Through the Fusion of Site and Satellite Data in Bottomland Hardwood Forested and Non-forested Wetlands
RII Track-4:@NASA:通过融合洼地硬木森林和非森林湿地的现场和卫星数据描述甲烷动力学
- 批准号:
2327374 - 财政年份:2024
- 资助金额:
$ 24.77万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
- 批准号:
2327422 - 财政年份:2024
- 资助金额:
$ 24.77万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
- 批准号:
2327493 - 财政年份:2024
- 资助金额:
$ 24.77万 - 项目类别:
Standard Grant