Epitaxial Growth and Characterization of 2-Dimensional Quantum Materials

二维量子材料的外延生长和表征

基本信息

  • 批准号:
    RGPIN-2022-05238
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This research program will build a Canadian capacity for the development and commercialization of novel quantum circuits through research excellence in 2D materials growth using the technique of metalorganic chemical vapour deposition (MOCVD). 2D materials have been studied intensely since the first successful fabrication of monolayer graphene - a single atomic layer of carbon in a hexagonal "honeycomb" lattice - and the study of graphene's remarkable quantum electronic properties which earned the 2010 Nobel Prize. 2D monolayers are typically produced by mechanical exfoliation (the Scotch Tape Technique), which involves manually peeling successively thinner flakes from a bulk crystal until eventually a single monolayer is found. The resulting flakes, though of very high quality, are extremely small and only identified through a laborious optical microscopy search, thus far limiting 2D materials to proof-of-concept devices. This program will develop growth and characterization techniques for large-area 2D films and heterostructures of graphene, hexagonal boron nitride and transition metal dichalcogenides (TMDs). While graphene is a zero-gap semiconductor, the TMDs (WS2, WSe2, MoS2, MoSe2) are direct-bandgap semiconductors with strong visible and near-IR light emission, presenting exciting possibilities for optoelectronic device applications. Moreover, TMD crystals have two inequivalent electronic valleys which can be independently addressed with circularly-polarized light, opening up the entirely new field of "Valleytronics". In analogy with Spintronics, this presents fascinating opportunities for coherent manipulation of the valley polarization and ultra-sensitive sensing. Large-area growth is a key differentiator to accelerate 2D device development, providing a feasible route to large-scale integration and manufacturability. Our 2D-MOCVD system is the first in North America and only the third such system in the world, providing invaluable opportunities for HQPs to lead research on the frontlines of commercialization. The research effort leverages significant ($6M) investments from uOttawa and the Canada Foundation for Innovation, ensuring that the program is supported by world-class instrumentation. Materials excellence will be established and active collaborations will be built to leverage this capacity for the benefit of 2D and quantum researchers throughout Canada. This will significantly enhance Canada's innovation capability for quantum and neuromorphic computing, highly-integrated quantum sensors, circuits and potentially ultra-large-scale-integrated circuits beyond silicon. High-quality, large-area 2D films and heterostructures will provide opportunities for large experimental-matrix studies of device architectures on full wafers, greatly accelerating the scientific understanding of 2D quantum devices. This will lead to innovative, high-performance, low-power-consumption systems and the advancement of TRL towards commercialization.
该研究计划将通过使用金属有机化学气相沉积(MOCVD)技术在二维材料生长方面的卓越研究,建立加拿大开发和商业化新型量子电路的能力。自从首次成功制造单层石墨烯(六角形“蜂窝”晶格中的碳单原子层)以及对石墨烯卓越量子电子特性的研究并获得 2010 年诺贝尔奖以来,二维材料得到了深入研究。二维单层通常通过机械剥离(透明胶带技术)来生产,该技术涉及从块状晶体中手动连续剥离更薄的薄片,直到最终找到单个单层。由此产生的薄片虽然质量非常高,但非常小,只能通过费力的光学显微镜搜索才能识别,因此迄今为止仅限于概念验证设备的二维材料。该项目将开发大面积二维薄膜和石墨烯、六方氮化硼和过渡金属二硫属化物(TMD)异质结构的生长和表征技术。石墨烯是一种零能隙半导体,而 TMD(WS2、WSe2、MoS2、MoSe2)是直接带隙半导体,具有强可见光和近红外光发射,为光电器件应用提供了令人兴奋的可能性。此外,TMD晶体具有两个不等价的电子谷,可以用圆偏振光独立寻址,开辟了“谷电子学”的全新领域。与自旋电子学类似,这为谷偏振和超灵敏传感的相干操纵提供了令人着迷的机会。大面积生长是加速 2D 器件开发的关键差异化因素,为大规模集成和可制造性提供了可行的途径。我们的 2D-MOCVD 系统是北美首个、全球第三个此类系统,为总部领导商业化前沿研究提供了宝贵的机会。该研究工作利用了渥太华大学和加拿大创新基金会的巨额投资(600 万美元),确保该项目得到世界一流仪器的支持。将建立卓越的材料并建立积极的合作,以利用这种能力造福整个加拿大的二维和量子研究人员。这将显着增强加拿大在量子和神经形态计算、高度集成的量子传感器、电路以及潜在的超越硅的超大规模集成电路方面的创新能力。高质量、大面积的二维薄膜和异质结构将为全晶圆上器件架构的大型实验矩阵研究提供机会,大大加速对二维量子器件的科学理解。这将带来创新、高性能、低功耗的系统,并推动 TRL 走向商业化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gupta, James其他文献

Gupta, James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gupta, James', 18)}}的其他基金

Epitaxial Growth and Characterization of 2-Dimensional Quantum Materials
二维量子材料的外延生长和表征
  • 批准号:
    DGECR-2022-00139
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Epitaxial Growth and Characterization of 2-Dimensional Quantum Materials
二维量子材料的外延生长和表征
  • 批准号:
    DGECR-2022-00139
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

外延生长法制备小孔硅铝分子筛及其结构表征
  • 批准号:
    22302195
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
过渡金属锗碲化合物薄膜的外延生长及其二维磁性的表征与调控研究
  • 批准号:
    12204237
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维过渡族金属卤化物的外延生长及其结构、电子态与磁性的原位表征
  • 批准号:
    12241402
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
过渡金属硫族化合物拓扑绝缘体薄膜及其异质结构的分子束外延生长和原位表征
  • 批准号:
    11774149
  • 批准年份:
    2017
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
有机拓扑绝缘体的理论预言和实验表征
  • 批准号:
    11674149
  • 批准年份:
    2016
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

Epitaxial Film Growth and Characterization of Stable and Metastable Gallium-Aluminum-Oxide Polymorphs
稳定和亚稳定镓铝氧化物多晶型物的外延膜生长和表征
  • 批准号:
    2324375
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Epitaxial Growth and Characterization of 2-Dimensional Quantum Materials
二维量子材料的外延生长和表征
  • 批准号:
    DGECR-2022-00139
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Epitaxial Growth and Characterization of 2-Dimensional Quantum Materials
二维量子材料的外延生长和表征
  • 批准号:
    DGECR-2022-00139
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Design, Molecular Beam Epitaxial Growth, Fabrication and Characterization of Nanowire LEDs and Lasers
纳米线 LED 和激光器的设计、分子束外延生长、制造和表征
  • 批准号:
    502905-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Design, Molecular Beam Epitaxial Growth, Fabrication and Characterization of Nanowire LEDs and Lasers
纳米线 LED 和激光器的设计、分子束外延生长、制造和表征
  • 批准号:
    502905-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了