Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction

用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模

基本信息

  • 批准号:
    RGPIN-2019-03967
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Optimization of operation and maintenance activities would result in huge efficiency and productivity improvements across most industrial and commercial sectors in Canada. However, this requires the collection and appropriate use of meaningful parameters that correlate with system performance, degradation, and failure. Existing monitoring and maintenance decision support strategies for most mechanical and structural components and systems still require human supervision and decision making, especially when the system being considered is complex, mobile, remote and/or operates in non-steady state modes. Automation of significant parts of this activity is urgently needed. When large amounts of historical data are available, fault detection and diagnosis is possible. Data-driven methods demonstrate huge potential here because of their ability to sort data and recognize patterns representing faulty conditions. However, when only limited data is available that represents failure and/or degradation, these methods are severely constrained. New recursive data processing strategies (particularly appropriate for dynamic signals collected from rotating machinery) will be explored to improve the robustness of these methods when data is scarce. Additionally, prediction is more challenging when using data-based methods because they only represent past experience. New techniques will be developed that can integrate new data collected on-line allowing for rapidly updated models for improved prognostics. Physics-based models are excellent tools for prediction. These models may range dramatically in size and complexity, but modification to allow incorporation of component faults or system degradation is relatively easy. This facilitates system or component performance prediction. New models will be developed for gear teeth, planetary gear systems, and motor/generator systems. Combining information from multiple sources significantly improves the confidence level. Hybrid data-driven and physics-based protocols will allow the advantages of both to be enhanced and the disadvantages to be minimized. Such hybrid approaches will facilitate the optimization of system operation and maintenance. Preliminary work in this vane has already shown that dramatic improvements in accuracy are possible. Further development could result in huge improvements in system degradation detection, fault diagnosis and failure prediction. A breakthrough in hybrid strategy designs and their application across a wider array of industries and commercial applications is critically needed to service the rapidly expanding adoption of autonomous systems (cars, light rail trains, wind turbine generators).
优化运营和维护活动将极大地提高加拿大大多数工业和商业部门的效率和生产力。然而,这需要收集和适当使用与系统性能、退化和故障相关的有意义的参数。大多数机械和结构部件和系统的现有监控和维护决策支持策略仍然需要人工监督和决策,特别是当所考虑的系统复杂、移动、远程和/或以非稳态模式运行时。迫切需要该活动的重要部分实现自动化。当有大量的历史数据可用时,故障检测和诊断就成为可能。数据驱动的方法在这里展示了巨大的潜力,因为它们能够对数据进行排序并识别代表错误情况的模式。然而,当只有有限的数据可表示故障和/或退化时,这些方法受到严重限制。将探索新的递归数据处理策略(特别适用于从旋转机械收集的动态信号),以在数据稀缺时提高这些方法的稳健性。此外,使用基于数据的方法进行预测更具挑战性,因为它们仅代表过去的经验。将开发新技术,可以整合在线收集的新数据,从而快速更新模型以改善预后。 基于物理的模型是出色的预测工具。这些模型的规模和复杂性可能相差很大,但进行修改以允许纳入组件故障或系统退化相对容易。这有利于系统或组件性能预测。将为轮齿、行星齿轮系统和电动机/发电机系统开发新模型。结合多个来源的信息可显着提高置信度。混合数据驱动和基于物理的协议将增强两者的优点,并最大限度地减少缺点。这种混合方法将有助于系统运行和维护的优化。该风向标的初步工作已经表明,精确度的显着提高是可能的。进一步的发展可能会导致系统退化检测、故障诊断和故障预测方面的巨大改进。迫切需要在混合策略设计及其在更广泛的行业和商业应用中的应用方面取得突破,以服务于自动系统(汽车、轻轨列车、风力涡轮发电机)的快速普及。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mechefske, Christopher其他文献

Mechefske, Christopher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mechefske, Christopher', 18)}}的其他基金

Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
  • 批准号:
    RGPIN-2019-03967
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
  • 批准号:
    536637-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
  • 批准号:
    536637-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Machine tool monitoring using data analytics and physics-based models
使用数据分析和基于物理的模型进行机床监控
  • 批准号:
    523509-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
  • 批准号:
    RGPIN-2019-03967
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Machine tool monitoring using data analytics and physics-based models
使用数据分析和基于物理的模型进行机床监控
  • 批准号:
    523509-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Machine tool monitoring using data analytics and physics-based models
使用数据分析和基于物理的模型进行机床监控
  • 批准号:
    523509-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
  • 批准号:
    536637-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Machine tool monitoring using data analytics and physics-based models
使用数据分析和基于物理的模型进行机床监控
  • 批准号:
    523509-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
  • 批准号:
    536637-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

面向智能车辆跟踪的数据机理融合驱动建模与安全模糊控制
  • 批准号:
    62373287
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可信实测数据驱动的自动驾驶险态场景构建与测评方法
  • 批准号:
    52372339
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
数据知识联合驱动的PHM协同型调度集成与优化
  • 批准号:
    62373288
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多源不确定性数据驱动的深水集输系统一体化状态监测研究
  • 批准号:
    62373277
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于混合数据驱动的短时临近波浪模拟预测研究
  • 批准号:
    52301336
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
  • 批准号:
    2323548
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
  • 批准号:
    2324742
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
Implementation of telemedicine and social network driven HIV service uptake for comprehensive HIV service integration in rural syringe service programs
实施远程医疗和社交网络驱动的艾滋病毒服务,将艾滋病毒服务全面纳入农村注射器服务计划
  • 批准号:
    10682889
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
  • 批准号:
    10714540
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了