EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells

EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计

基本信息

  • 批准号:
    2324742
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Over the past decade, immunotherapy has rapidly become the "new pillar" of cancer treatment, utilizing and strengthening the patient's immune system to attack tumors. Chimeric antigen receptors (CARs) engineered on T cells, a type of white blood cells, have revolutionized the treatment of blood cancers and have shown promise for treating solid tumors, as well as auto-immune diseases and chronic viral infections. The main goal when engineering CAR T cells is to generate T cell phenotypes capable of effective and durable tumor clearance with increased anti-tumor cytotoxicity, T cell persistence, and lower exhaustion. CAR intracellular domains play a key role in converting antigen recognition into these anti-tumor effector functions. Selecting among a plethora of candidate receptor domains and ordering them on a receptor, to optimize their effect on cellular function, presents both tremendous opportunities and considerable design challenges. A large-scale systematic computational exploration and recommendation of CAR signaling domains has the potential to transform the field of CAR-based immunotherapy by producing novel CAR T cell behaviors leading to safer, more effective therapies. At the same time, such studies offer excellent interdisciplinary training, bridging synthetic biology explorations and fundamental biology knowledge with innovative computational approaches.To accomplish these goals, this EArly Grant for Exploratory Research (EAGER) will explore a radically different CAR T cell design methodology, a hybrid artificial intelligence approach that integrates experimental data, through data-driven learning and inference methods, with knowledge sources, through knowledge-driven mechanistic network assembly and analysis. This project will systematically study the steps in the receptor design pipeline, and their full automation: retrieval of relevant information from literature and pathway databases, intracellular T cell network assembly, knowledge-based constraint generation and use in data-driven deep learning methods. With these explorations, this project will determine the most effective methods to address the uncertainty and training runtime of previous approaches, while providing reliable recommendations and explanations of CAR designs. Ultimately, this project would advance the knowledge and contribute novel research strategies in synthetic biology, systems biology, biosensing, and immunotherapy. The outcomes of this project, evaluation of novel algorithms and methods, network simulation and analysis data, and mechanistic explanations of recommended CARs, will be open source and publicly available for the wide scientific community to examine, utilize, and reproduce.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过去十年,免疫疗法迅速成为癌症治疗的“新支柱”,利用和增强患者的免疫系统来攻击肿瘤。 T 细胞(一种白细胞)上的嵌合抗原受体 (CAR) 彻底改变了血癌的治疗方法,并显示出治疗实体瘤、自身免疫性疾病和慢性病毒感染的前景。工程化 CAR T 细胞的主要目标是产生能够有效且持久清除肿瘤的 T 细胞表型,同时增强抗肿瘤细胞毒性、T 细胞持久性和较低的耗竭。 CAR 胞内结构域在将抗原识别转化为这些抗肿瘤效应功能方面发挥着关键作用。从大量候选受体结构域中进​​行选择并将它们排列在受体上,以优化它们对细胞功能的影响,既带来了巨大的机遇,也带来了巨大的设计挑战。 CAR 信号域的大规模系统计算探索和推荐有可能通过产生新的 CAR T 细胞行为来改变基于 CAR 的免疫治疗领域,从而带来更安全、更有效的治疗。同时,此类研究提供了出色的跨学科培训,将合成生物学探索和基础生物学知识与创新计算方法联系起来。为了实现这些目标,这项早期探索性研究资助(EAGER)将探索一种完全不同的 CAR T 细胞设计方法,一种混合人工智能方法,通过数据驱动的学习和推理方法,通过知识驱动的机械网络组装和分析,将实验数据与知识源集成。该项目将系统地研究受体设计流程中的步骤及其完全自动化:从文献和通路数据库中检索相关信息、细胞内 T 细胞网络组装、基于知识的约束生成以及在数据驱动的深度学习方法中的使用。通过这些探索,该项目将确定最有效的方法来解决先前方法的不确定性和训练运行时间,同时提供 CAR 设计的可靠建议和解释。最终,该项目将推进合成生物学、系统生物学、生物传感和免疫治疗领域的知识并贡献新颖的研究策略。该项目的成果、新算法和方法的评估、网络模拟和分析数据以及推荐 CAR 的机制解释将开源并公开供广大科学界检查、利用和复制。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natasa Miskov-Zivanov其他文献

Natasa Miskov-Zivanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natasa Miskov-Zivanov', 18)}}的其他基金

Request for travel supplement: DAC Workshop on Modeling of Biological Systems (MoBS)
申请差旅补助:DAC 生物系统建模研讨会 (MoBS)
  • 批准号:
    1342590
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

组蛋白乳酸化激活ac4C乙酰化促进葡萄膜黑色素瘤发展的作用机制研究
  • 批准号:
    82373298
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
15-PGDH通过AMPK信号通路调控NAFLD发生发展的分子机制研究
  • 批准号:
    82300967
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
  • 批准号:
    72303127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新物质主义视角下旅游商品带动地方发展的格局、过程及作用机制
  • 批准号:
    42371235
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
tRNAMet通过调控富含AUG密码子基因的蛋白翻译促进HCC发展的机制研究
  • 批准号:
    82373963
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
  • 批准号:
    10752930
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
CAREER: Development of Novel High-Performance Carbon Sink Concrete Materials Using Sustainable Multifunctional Hybrid Additives
职业:使用可持续多功能混合添加剂开发新型高性能碳汇混凝土材料
  • 批准号:
    2335878
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
  • 批准号:
    23K04012
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishing the design and development of novel crystalline-amorphous hybrid optical coatings for precision measurements and frequency standards
建立用于精密测量和频率标准的新型晶体-非晶混合光学涂层的设计和开发
  • 批准号:
    ST/X004740/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Development and Application of Functional Hybrid Composite Materials
功能杂化复合材料的开发及应用
  • 批准号:
    2889252
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了