Data-Driven Robust Control Systems for Sustainability
数据驱动的鲁棒控制系统促进可持续发展
基本信息
- 批准号:RGPIN-2020-05914
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As we are entering the era of ubiquitous artificial intelligence and automation, the sustainability of engineered systems can greatly benefit from the development of machine-learning-based adaptive robust control and optimization. The goal is to increase system automation levels towards autonomous operation while maintaining safe operation at scale and preserving the environment for future generations. While AI, or more precisely machine learning, has recently enabled incredible performance enhancement in many fields such as image recognition and natural language processing, its inherent adaptive black-box architecture has made it difficult to use in safety-critical engineering applications such as aircraft flight control or autonomous vehicles with respect to the explainability of its decision-making and its unpredictable interaction effects with the system dynamics in closed loop. Thus, the certification of such machine-learning-based safety-critical systems is currently very difficult if not outright impossible in, e.g., aerospace applications. Yet, machine learning offers a path to the autonomous future that all are preparing for. The main goal of the proposed engineering research program is thus to develop innovative, data-driven, provably robust and sustainable autonomous control systems. The applications range from electric vehicles (EV), electric autonomous vehicles (EAV), renewable energy management systems (EMS), building heating, ventilation and air conditioning (HVAC) systems, and electrified industrial processes. Classical control and optimization techniques have been very successful at increasing the efficiency and performance of individual systems such as production machines, industrial robots, ground vehicles, aircraft and industrial processes. However, such control systems may not adapt well to wildly variable conditions and rapidly changing dynamics. For instance, in the current context of fast development of automated passenger and transport vehicles, the changing conditions under which such autonomous vehicles will be operating far surpasses the ability of regular control systems based on robust, adaptive and model predictive control methods to keep the vehicle in a stable, safe zone of operation at all times. On the other hand, the ubiquity of connected autonomous cyberphysical systems such as AV offers an enormous amount of fresh data from operating peer systems that can be used to improve the behavior of the local system and allow it to respond to the demand of higher efficiency objectives of the network, such as a fleet of robo-taxis. Machine learning techniques have proven apt at capturing approximate models of fast changing dynamical environments based on real-time data, e.g., in autonomous driving. Thus, we propose to investigate the merging of machine learning and feedback control techniques to get the best of both worlds, that is, provenly-robust high-performance control systems that adapt to changing conditions.
随着我们进入无处不在的人工智能和自动化时代,工程系统的可持续性可以极大地受益于基于机器学习的自适应鲁棒控制和优化的发展。目标是提高系统自动化水平,实现自主运行,同时保持大规模安全运行并为子孙后代保护环境。虽然人工智能,或更准确地说是机器学习,最近在图像识别和自然语言处理等许多领域实现了令人难以置信的性能增强,但其固有的自适应黑盒架构使其难以在飞机飞行等安全关键工程应用中使用控制或自动驾驶车辆的决策的可解释性及其与闭环系统动力学的不可预测的相互作用效应。因此,目前在航空航天应用等领域,对这种基于机器学习的安全关键系统进行认证即使不是完全不可能,也是非常困难的。然而,机器学习提供了一条通往所有人都在为之准备的自主未来的道路。因此,拟议的工程研究计划的主要目标是开发创新的、数据驱动的、可证明稳健且可持续的自主控制系统。应用范围包括电动汽车 (EV)、电动自动驾驶汽车 (EAV)、可再生能源管理系统 (EMS)、建筑供暖、通风和空调 (HVAC) 系统以及电气化工业流程。经典控制和优化技术在提高生产机器、工业机器人、地面车辆、飞机和工业流程等单个系统的效率和性能方面非常成功。然而,此类控制系统可能无法很好地适应剧烈变化的条件和快速变化的动态。例如,在当前自动客运和运输车辆快速发展的背景下,此类自动驾驶车辆运行条件的变化远远超出了基于鲁棒、自适应和模型预测控制方法的常规控制系统保持车辆稳定运行的能力。始终处于稳定、安全的操作区域。另一方面,无处不在的互联自主网络物理系统(例如 AV)提供了来自运行对等系统的大量新数据,这些数据可用于改进本地系统的行为并使其能够响应更高效率目标的需求网络的一部分,例如机器人出租车队。事实证明,机器学习技术能够基于实时数据捕获快速变化的动态环境的近似模型,例如在自动驾驶中。因此,我们建议研究机器学习和反馈控制技术的融合,以获得两全其美的效果,即经过证明的鲁棒性高性能控制系统,能够适应不断变化的条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boulet, Benoit其他文献
Boulet, Benoit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boulet, Benoit', 18)}}的其他基金
Data-Driven Robust Control Systems for Sustainability
数据驱动的鲁棒控制系统促进可持续发展
- 批准号:
RGPIN-2020-05914 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Modeling and machine learning-based control of a continuously-variable transmission system
无级变速器系统的建模和基于机器学习的控制
- 批准号:
570764-2021 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
Data-Driven Robust Control Systems for Sustainability
数据驱动的鲁棒控制系统促进可持续发展
- 批准号:
RGPIN-2020-05914 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Modeling and machine learning-based control of a continuously-variable transmission system
无级变速器系统的建模和基于机器学习的控制
- 批准号:
570764-2021 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
Data-Driven Robust Control Systems for Sustainability
数据驱动的鲁棒控制系统促进可持续发展
- 批准号:
RGPIN-2020-05914 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Data-Driven Robust Control Systems for Sustainability
数据驱动的鲁棒控制系统促进可持续发展
- 批准号:
RGPIN-2020-05914 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Robust Control of Biomedical and Environmentally Sustainable Engineered Systems
生物医学和环境可持续工程系统的鲁棒控制
- 批准号:
RGPIN-2015-05574 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Robust Control of Biomedical and Environmentally Sustainable Engineered Systems
生物医学和环境可持续工程系统的鲁棒控制
- 批准号:
RGPIN-2015-05574 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Robust Control of Biomedical and Environmentally Sustainable Engineered Systems
生物医学和环境可持续工程系统的鲁棒控制
- 批准号:
RGPIN-2015-05574 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Conceptual Design of an Efficient Heating System for an Electric Bus**
电动公交车高效加热系统的概念设计**
- 批准号:
534233-2018 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
相似国自然基金
“双动力”驱动型纳米诊疗剂的构建及其时序化调控NTEs免疫微环境诊治内植物相关感染的机制研究
- 批准号:82372427
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
CBP/p300在氨基酸驱动肝糖异生中的作用研究
- 批准号:82300896
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据与知识融合驱动的晶圆图缺陷生成式检测模型研究
- 批准号:52375485
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大山雀双亲抚育行为的时空变异及其驱动因素
- 批准号:32371565
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
海浪驱动压电钛酸钡陶瓷涂层在船体抗污防腐中的作用机制
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
相似海外基金
Robust Data-Driven Control for Safety-Critical Systems
针对安全关键系统的稳健数据驱动控制
- 批准号:
DP230101014 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Projects
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
- 批准号:
2330794 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
I-Corps: Data-Driven Robust Optimization Technology for Battery Storage System Management
I-Corps:数据驱动的电池存储系统管理鲁棒优化技术
- 批准号:
2222450 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
- 批准号:
10684375 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Advanced data-driven approaches to design and plan robust and sustainable network for the forest biorefinery value chains taking into account uncertainty
采用先进的数据驱动方法,在考虑不确定性的情况下,为森林生物炼制价值链设计和规划强大且可持续的网络
- 批准号:
RGPIN-2020-07141 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual