Physics-Inspired Neural Networks in the Evaluation, Generation and Design of Frame Structures
物理启发的神经网络在框架结构的评估、生成和设计中的应用
基本信息
- 批准号:523871886
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Structural optimization represents an economical and effective lightweight design method, especially when full material utilization in terms of strength and stiffness is desired. The design and evaluation of truss structures is one of the most common tasks in practice, often by using numerical simulation with beam or truss elements. In this work, alternative design and evaluation procedures of such 1D idealizations based on so-called physical-inspired neural networks (PINN) are the focus of research. Thereby, mainly 3D simulation data and 3D topology optimization results shall serve as a training basis to improve the predictive behaviour of the 1D idealizations. In total, three different PINNs will be investigated. The first PINN is expected to lead to improved prediction of physical quantities such as deformation and strain of 1D models. The second PINN is intended to derive optimal cross-section parameters based on a given 1D frame structure. The third PINN will use training data from 3D optimizations to predict optimal design proposals for frame structures so that, for example, regions with multi-axial states can be directly optimized and derived as a parametric model without the need for complex topology optimization. In addition to the training of PINNs, a method based on the so-called skeletonization for the fully automatic transfer of results from a 3D simulation to a 1D model is also investigated. This fully automatic transfer is necessary to generate the synthetic data sets for the respective PINNs. Finally, the trained PINNs are combined to realize an automated evaluation, cross-section dimensioning and locally optimized regions in real time (a few seconds) for a bicycle frame, for example.
结构优化代表了一种经济有效的轻质设计方法,尤其是在需要实力和刚度的全面利用时。桁架结构的设计和评估通常是使用梁或桁架元素的数值模拟,是实践中最常见的任务之一。在这项工作中,基于所谓的物理启发的神经网络(PINN)的此类1D理想化的替代设计和评估程序是研究的重点。因此,主要是3D仿真数据和3D拓扑优化结果应作为培训基础,以改善一维理想化的预测行为。总共将研究三个不同的Pinn。预计第一个PINN将导致改进物理量的预测,例如变形和1D模型的应变。第二个PINN旨在根据给定的1D帧结构得出最佳的横截面参数。第三个PINN将使用来自3D优化的训练数据来预测框架结构的最佳设计建议,例如,具有多轴状态的区域可以直接优化并作为参数模型得出,而无需进行复杂的拓扑优化。除了训练PINN,还研究了一种基于所谓的骨架化方法,用于将结果从3D模拟转移到1D模型。对于生成相应的PINNS的合成数据集是必需的。最后,将训练有素的PINN组合在一起,以实现自动化的自动化评估,横截面尺寸和本地优化的区域(例如,几秒钟)为自行车框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Sandro Wartzack其他文献
Professor Dr.-Ing. Sandro Wartzack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Sandro Wartzack', 18)}}的其他基金
Form synthesis at early embodiment design stage: A computer-aided method to model preliminary embodiment designs
早期实施例设计阶段的形式合成:对初步实施例设计进行建模的计算机辅助方法
- 批准号:
401324164 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
CAD features to model physical aspects of human-machine interactions
用于模拟人机交互的物理方面的 CAD 功能
- 批准号:
396858371 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
TopoRestruct – Converting topology optimization results into a design geometry, which meets the requirements for manufacturability, functionality and mechanical stress in the product development process
TopoRestruct â 将拓扑优化结果转换为设计几何形状,满足产品开发过程中对可制造性、功能性和机械应力的要求
- 批准号:
411012054 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Shape aware Computer Aided Tolerancing: A new methodical and computational framework for the assembly and mobility simulation based on Skin Model Shapes (ShapeCAN)
形状感知计算机辅助公差:基于蒙皮模型形状 (ShapeCAN) 的装配和移动模拟的新方法和计算框架
- 批准号:
278389853 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
[ProPro 2.0] - Product-oriented process management - Computer-aided modeling as well as graph-based analysis and visualization of the matrix-based product description
[ProPro 2.0] - 以产品为导向的流程管理 - 计算机辅助建模以及基于矩阵的产品描述的基于图形的分析和可视化
- 批准号:
211191171 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Functional product validation and optimization of technical systems in motion as a part of product lifecycle oriented tolerance management
作为面向产品生命周期的公差管理的一部分,功能产品验证和动态技术系统优化
- 批准号:
165053436 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
UPREN USED – User, product and environmental influences on usability and emotional product design
UPREN USED â 用户、产品和环境对可用性和情感产品设计的影响
- 批准号:
398054801 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
OptNeTol: Integrated, optimization-based parameter and tolerance design
OptNeTol:基于优化的集成参数和公差设计
- 批准号:
362421942 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
A biologically-inspired, interactive digital device to introduce K12 students to computational neuroscience
一种受生物学启发的交互式数字设备,可向 K12 学生介绍计算神经科学
- 批准号:
10706026 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Revealing the circuit mechanisms of altered conscious perception with neuropixels recordings and biophysically-inspired neural networks.
通过神经像素记录和生物物理学启发的神经网络揭示改变意识感知的回路机制。
- 批准号:
BB/X013243/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
CRII: RI: Immune-Inspired Learning Foundations of Neural Network General Robustness
CRII:RI:神经网络一般鲁棒性的免疫启发学习基础
- 批准号:
2246157 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Circuit-Inspired Strategies to Restore Basal Ganglia Function in Mouse Models of Parkinson’s Disease
恢复帕金森病小鼠模型基底神经节功能的受电路启发的策略
- 批准号:
10665167 - 财政年份:2023
- 资助金额:
-- - 项目类别:
SBIR Direct Phase II: Nature Inspired Biphasic Glue for Dura Repair
SBIR Direct Phase II:用于硬脑膜修复的自然双相胶水
- 批准号:
10707091 - 财政年份:2022
- 资助金额:
-- - 项目类别: